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204 Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in 3-space as an
arrow from the origin to that point. Doing so provides a “picture” of the point that is truly worth
a thousand words. We used this idea earlier, in Section 2.6, to describe rotations, reflections, and
projections of the plane R2. We now apply the same techniques to 3-space to examine similar
transformations of R3. Moreover, the method enables us to completely describe all lines and planes
in space.

Vectors in R3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose a point O
called the origin, then choose three mutually perpendicular lines through O, called the x, y, and z
axes, and establish a number scale on each axis with zero at the origin. Given a point P in 3-space
we associate three numbers x, y, and z with P, as described in Figure 4.1.1. These numbers are
called the coordinates of P, and we denote the point as (x, y, z), or P(x, y, z) to emphasize the label
P. The result is called a cartesian1 coordinate system for 3-space, and the resulting description of
3-space is called cartesian geometry.

O

P(x, y, z)

P0(x, y, 0)

v =

 x
y
z



x

y

z

Figure 4.1.1

As in the plane, we introduce vectors by identifying each point

P(x, y, z) with the vector v =

 x
y
z

 in R3, represented by the ar-

row from the origin to P as in Figure 4.1.1. Informally, we say that
the point P has vector v, and that vector v has point P. In this
way 3-space is identified with R3, and this identification will be made
throughout this chapter, often without comment. In particular, the
terms “vector” and “point” are interchangeable.2 The resulting de-
scription of 3-space is called vector geometry. Note that the origin

is 0 =

 0
0
0

.

1Named after René Descartes who introduced the idea in 1637.
2Recall that we defined Rn as the set of all ordered n-tuples of real numbers, and reserved the right to denote

them as rows or as columns.
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Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R3: length and direction.
First, if v is a vector with point P, the length ‖v‖ of vector v is defined to be the distance from
the origin to P, that is the length of the arrow representing v. The following properties of length
will be used frequently.

Theorem 4.1.1

Let v =

 x
y
z

 be a vector.

1. ‖v‖=
√

x2 + y2 + z2. 3

2. v = 0 if and only if ‖v‖= 0

3. ‖av‖= |a|‖v‖ for all scalars a. 4

v
z

y

h
O

P

Q

R

i

x

x

y

z

Figure 4.1.2

Proof. Let v have point P(x, y, z).

1. In Figure 4.1.2, ‖v‖ is the hypotenuse of the right triangle OQP,
and so ‖v‖2 = h2 + z2 by Pythagoras’ theorem.5 But h is the
hypotenuse of the right triangle ORQ, so h2 = x2 + y2. Now (1)
follows by eliminating h2 and taking positive square roots.

2. If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of
real numbers are nonnegative, it follows that x = y = z = 0, and
hence that v = 0. The converse is because ‖0‖= 0.

3. We have av =
[

ax ay az
]T so (1) gives

‖av‖2 = (ax)2 +(ay)2 +(az)2 = a2‖v‖2

Hence ‖av‖=
√

a2‖v‖, and we are done because
√

a2 = |a| for any real number a.

Of course the R2-version of Theorem 4.1.1 also holds.

3When we write √
p we mean the positive square root of p.

4Recall that the absolute value |a| of a real number is defined by |a|=
{

a if a ≥ 0
−a if a < 0 .

5Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2 + b2 = c2. A
proof is given at the end of this section.
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Example 4.1.1

If v =

 2
−1

3

 then ‖v‖=
√

4+1+9 =
√

14. Similarly if v =

[
3

−4

]
in 2-space then

‖v‖=
√

9+16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is clear geometrically
what we mean by saying that they have the same or opposite direction. This leads to a fundamental
new description of vectors.

Theorem 4.1.2
Let v 6= 0 and w 6= 0 be vectors in R3. Then v = w as matrices if and only if v and w have
the same direction and the same length.6

v

w
O

P

Q

x

y

z

Figure 4.1.3

Proof. If v = w, they clearly have the same direction and length. Con-
versely, let v and w be vectors with points P(x, y, z) and Q(x1, y1, z1)
respectively. If v and w have the same length and direction then, geomet-
rically, P and Q must be the same point (see Figure 4.1.3). Hence x = x1,

y = y1, and z = z1, that is v =

 x
y
z

=

 x1
y1
z1

= w.

A characterization of a vector in terms of its length and direction only is called an intrinsic
description of the vector. The point to note is that such a description does not depend on the choice
of coordinate system in R3. Such descriptions are important in applications because physical laws
are often stated in terms of vectors, and these laws cannot depend on the particular coordinate
system used to describe the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to B has length and direction.

−→
AB

O

A

B

x

y

z

Figure 4.1.4
6It is Theorem 4.1.2 that gives vectors their power in science and engineering because many physical quantities

are determined by their length and magnitude (and are called vector quantities). For example, saying that an
airplane is flying at 200 km/h does not describe where it is going; the direction must also be specified. The speed
and direction comprise the velocity of the airplane, a vector quantity.
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Hence:

Definition 4.1 Geometric Vectors
Suppose that A and B are any two points in R3. In Figure 4.1.4 the line segment from A to
B is denoted −→

AB and is called the geometric vector from A to B. Point A is called the tail
of −→AB, B is called the tip of −→AB, and the length of −→AB is denoted ‖−→AB‖.

O

A(3, 1)

B(2, 3)

P(1, 0)

Q(0, 2)

x

y

Figure 4.1.5

Note that if v is any vector in R3 with point P then v=
−→
OP is itself

a geometric vector where O is the origin. Referring to −→
AB as a “vector”

seems justified by Theorem 4.1.2 because it has a direction (from A to
B) and a length ‖−→AB‖. However there appears to be a problem because
two geometric vectors can have the same length and direction even if
the tips and tails are different. For example −→AB and −→

PQ in Figure 4.1.5
have the same length

√
5 and the same direction (1 unit left and 2

units up) so, by Theorem 4.1.2, they are the same vector! The best
way to understand this apparent paradox is to see −→

AB and −→
PQ as

different representations of the same7 underlying vector
[
−1

2

]
. Once

it is clarified, this phenomenon is a great benefit because, thanks to
Theorem 4.1.2, it means that the same geometric vector can be positioned anywhere in space; what
is important is the length and direction, not the location of the tip and tail. This ability to move
geometric vectors about is very useful as we shall soon see.

The Parallelogram Law

v
v+wwA

P

Q

P

Figure 4.1.6

We now give an intrinsic description of the sum of two vectors v and w in
R3, that is a description that depends only on the lengths and directions of
v and w and not on the choice of coordinate system. Using Theorem 4.1.2
we can think of these vectors as having a common tail A. If their tips are
P and Q respectively, then they both lie in a plane P containing A, P, and
Q, as shown in Figure 4.1.6. The vectors v and w create a parallelogram8

in P , shaded in Figure 4.1.6, called the parallelogram determined by v
and w.

If we now choose a coordinate system in the plane P with A as origin, then the parallelogram
law in the plane (Section 2.6) shows that their sum v+w is the diagonal of the parallelogram
they determine with tail A. This is an intrinsic description of the sum v+w because it makes no
reference to coordinates. This discussion proves:

7Fractions provide another example of quantities that can be the same but look different. For example 6
9 and 14

21
certainly appear different, but they are equal fractions—both equal 2

3 in “lowest terms”.
8Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v+w is the diagonal
with the same tail as v and w.

v

w
v+w

P
(a) w

v
v+w

(b)

v

w

w+v
(c)

Figure 4.1.7

Because a vector can be positioned with its tail at any point, the parallel-
ogram law leads to another way to view vector addition. In Figure 4.1.7(a)
the sum v+w of two vectors v and w is shown as given by the parallelogram
law. If w is moved so its tail coincides with the tip of v (Figure 4.1.7(b))
then the sum v+w is seen as “first v and then w. Similarly, moving the
tail of v to the tip of w shows in Figure 4.1.7(c) that v+w is “first w and
then v.” This will be referred to as the tip-to-tail rule, and it gives a
graphic illustration of why v+w = w+v.

Since −→
AB denotes the vector from a point A to a point B, the tip-to-tail

rule takes the easily remembered form
−→
AB+

−→
BC =

−→
AC

for any points A, B, and C. The next example uses this to derive a theorem
in geometry without using coordinates.

Example 4.1.2

Show that the diagonals of a parallelogram bisect each other.

A

B

C

D

EM

Solution. Let the parallelogram have vertices A, B, C, and D,
as shown; let E denote the intersection of the two diagonals;
and let M denote the midpoint of diagonal AC. We must
show that M = E and that this is the midpoint of diagonal
BD. This is accomplished by showing that −→

BM =
−−→
MD. (Then

the fact that these vectors have the same direction means that
M = E, and the fact that they have the same length means
that M = E is the midpoint of BD.) Now −→

AM =
−→
MC because

M is the midpoint of AC, and −→
BA =

−→
CD because the figure is a

parallelogram. Hence
−→
BM =

−→
BA+

−→
AM =

−→
CD+

−→
MC =

−→
MC+

−→
CD =

−−→
MD

where the first and last equalities use the tip-to-tail rule of vector addition.

u
v

w

u

v

w

u+v+w

Figure 4.1.8

One reason for the importance of the tip-to-tail rule is that it
means two or more vectors can be added by placing them tip-to-tail
in sequence. This gives a useful “picture” of the sum of several vectors,
and is illustrated for three vectors in Figure 4.1.8 where u+v+w is
viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) dif-
ference v−w of two vectors. If v and w are positioned so that they



4.1. Vectors and Lines 209

have a common tail A (see Figure 4.1.9), and if B and C are their
respective tips, then the tip-to-tail rule gives w+

−→
CB = v. Hence v−w =

−→
CB is the vector from

the tip of w to the tip of v. Thus both v−w and v+w appear as diagonals in the parallelogram
determined by v and w (see Figure 4.1.9). We record this for reference.

w

v −→
CB

A

B

C

w

v

v−w v+w

Figure 4.1.9

Theorem 4.1.3
If v and w have a common tail, then v−w is the vector from
the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it
gives a simple formula for the vector from one point to another, and
for the distance between the points.

Theorem 4.1.4
Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1. −→
P1P2 =

 x2 − x1
y2 − y1
z2 − z1

.

2. The distance between P1 and P2 is
√

(x2 − x1)2 +(y2 − y1)2 +(z2 − z1)2.

v1

−−→
P1P2

v2

P1

P2

O

Figure 4.1.10

Proof. If O is the origin, write

v1 =
−→
OP1 =

 x1
y1
z1

 and v2 =
−→
OP2 =

 x2
y2
z2


as in Figure 4.1.10.

Then Theorem 4.1.3 gives −→
P1P2 = v2 −v1, and (1) follows. But

the distance between P1 and P2 is ‖−→P1P2‖, so (2) follows from (1) and
Theorem 4.1.1.

Of course the R2-version of Theorem 4.1.4 is also valid: If P1(x1, y1) and P2(x2, y2) are points

in R2, then −→
P1P2 =

[
x2 − x1
y2 − y1

]
, and the distance between P1 and P2 is

√
(x2 − x1)2 +(y2 − y1)2.

Example 4.1.3

The distance between P1(2, −1, 3) and P2(1, 1, 4) is
√

(−1)2 +(2)2 +(1)2 =
√

6, and the
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vector from P1 to P2 is −→
P1P2 =

 −1
2
1

.

As for the parallelogram law, the intrinsic rule for finding the length and direction of a scalar
multiple of a vector in R3 follows easily from the same situation in R2.

Scalar Multiple Law

If a is a real number and v 6= 0 is a vector then:

1. The length of av is ‖av‖= |a|‖v‖.

2. If9av 6= 0, the direction of av is
{

the same as v if a > 0,
opposite to v if a < 0.

Proof.

1. This is part of Theorem 4.1.1.

2. Let O denote the origin in R3, let v have point P, and choose any plane containing O and P.
If we set up a coordinate system in this plane with O as origin, then v =

−→
OP so the result in

(2) follows from the scalar multiple law in the plane (Section 2.6).

Figure 4.1.11 gives several examples of scalar multiples of a vector v.

v
2v

1
2 v

(−2)v

(− 1
2 )v

Figure 4.1.11

O
P

L

−1
2p

1
2p

p 3
2p

Figure 4.1.12

Consider a line L through the origin, let P be any point on L other
than the origin O, and let p =

−→
OP. If t 6= 0, then tp is a point on L

because it has direction the same or opposite as that of p. Moreover
t > 0 or t < 0 according as the point tp lies on the same or opposite
side of the origin as P. This is illustrated in Figure 4.1.12.

A vector u is called a unit vector if ‖u‖= 1. Then i =

 1
0
0

,

j =

 0
1
0

, and k =

 0
0
1

 are unit vectors, called the coordinate

vectors. We discuss them in more detail in Section 4.2.

Example 4.1.4

If v 6= 0 show that 1
‖v‖v is the unique unit vector in the same direction as v.

9Since the zero vector has no direction, we deal only with the case av 6= 0.
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Solution. The vectors in the same direction as v are the scalar multiples av where a > 0.
But ‖av‖= |a|‖v‖= a‖v‖ when a > 0, so av is a unit vector if and only if a = 1

‖v‖ .

The next example shows how to find the coordinates of a point on the line segment between two
given points. The technique is important and will be used again below.

Example 4.1.5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third the way
from P1 to P2, show that the vector m of M is given by

m = 2
3p1 +

1
3p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has coordinates

M = M
(2

3x1 +
1
3x2, 2

3y1 +
1
3y2, 2

3z1 +
1
3z2

)

p1

m

p2

O

P1

M

P2

Solution. The vectors p1, p2, and m are shown in the diagram.
We have −−→

P1M = 1
3
−→
P1P2 because −−→

P1M is in the same direction as
−→
P1P2 and 1

3 as long. By Theorem 4.1.3 we have −→
P1P2 = p2 −p1,

so tip-to-tail addition gives

m = p1 +
−−→
P1M = p1 +

1
3(p2 −p1) =

2
3p1 +

1
3p2

as required. For the coordinates, we have p1 =

 x1
y1
z1

 and

p2 =

 x2
y2
z2

, so

m = 2
3

 x1
y1
z1

+ 1
3

 x2
y2
z2

=


2
3x1 +

1
3x2

2
3y1 +

1
3y2

2
3z1 +

1
3z2


by matrix addition. The last statement follows.

Note that in Example 4.1.5 m = 2
3p1 +

1
3p2 is a “weighted average” of p1 and p2 with more weight

on p1 because m is closer to p1.
The point M halfway between points P1 and P2 is called the midpoint between these points. In

the same way, the vector m of M is

m = 1
2p1 +

1
2p2 =

1
2(p1 +p2)
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as the reader can verify, so m is the “average” of p1 and p2 in this case.

Example 4.1.6

Show that the midpoints of the four sides of any quadrilateral are the vertices of a
parallelogram. Here a quadrilateral is any figure with four vertices and straight sides.

Solution. Suppose that the vertices of the quadrilateral are A, B, C, and D (in that order)
and that E, F , G, and H are the midpoints of the sides as shown in the diagram. It suffices
to show −→

EF =
−→
HG (because then sides EF and HG are parallel and of equal length).

A

B

C

D

E

F

G

H

Now the fact that E is the midpoint of AB means that−→
EB = 1

2
−→
AB. Similarly, −→BF = 1

2
−→
BC, so

−→
EF =

−→
EB+

−→
BF = 1

2
−→
AB+ 1

2
−→
BC = 1

2(
−→
AB+

−→
BC) = 1

2
−→
AC

A similar argument shows that −→
HG = 1

2
−→
AC too, so −→

EF =
−→
HG

as required.

Definition 4.2 Parallel Vectors in R3

Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will be referred to
repeatedly.

Theorem 4.1.5
Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

Proof. If one of them is a scalar multiple of the other, they are parallel by the scalar multiple law.
Conversely, assume that v and w are parallel and write d = ‖v‖

‖w‖ for convenience. Then v and
w have the same or opposite direction. If they have the same direction we show that v = dw by
showing that v and dw have the same length and direction. In fact, ‖dw‖ = |d|‖w‖ = ‖v‖ by
Theorem 4.1.1; as to the direction, dw and w have the same direction because d > 0, and this is
the direction of v by assumption. Hence v = dw in this case by Theorem 4.1.2. In the other case,
v and w have opposite direction and a similar argument shows that v =−dw. We leave the details
to the reader.

Example 4.1.7

Given points P(2, −1, 4), Q(3, −1, 3), A(0, 2, 1), and B(1, 3, 0), determine if −→PQ and −→
AB

are parallel.
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Solution. By Theorem 4.1.3, −→PQ = (1, 0, −1) and −→
AB = (1, 1, −1). If −→PQ = t

−→
AB then

(1, 0, −1) = (t, t, −t), so 1 = t and 0 = t, which is impossible. Hence −→
PQ is not a scalar

multiple of −→AB, so these vectors are not parallel by Theorem 4.1.5.

Lines in Space

These vector techniques can be used to give a very simple way of describing straight lines in space.
In order to do this, we first need a way to specify the orientation of such a line, much as the slope
does in the plane.

Definition 4.3 Direction Vector of a Line
With this in mind, we call a nonzero vector d 6= 0 a direction vector for the line if it is
parallel to −→

AB for some pair of distinct points A and B on the line.

p0

P0P

p

d

Origin

P0
P

Figure 4.1.13

Of course it is then parallel to −→
CD for any distinct points C and D on

the line. In particular, any nonzero scalar multiple of d will also serve
as a direction vector of the line.

We use the fact that there is exactly one line that passes through a

particular point P0(x0, y0, z0) and has a given direction vector d=

 a
b
c

.

We want to describe this line by giving a condition on x, y, and z that

the point P(x, y, z) lies on this line. Let p0 =

 x0
y0
z0

 and p =

 x
y
z


denote the vectors of P0 and P, respectively (see Figure 4.1.13). Then

p = p0 +
−→
P0P

Hence P lies on the line if and only if −→P0P is parallel to d—that is, if and only if −→P0P = td for some
scalar t by Theorem 4.1.5. Thus p is the vector of a point on the line if and only if p = p0 + td for
some scalar t. This discussion is summed up as follows.

Vector Equation of a Line

The line parallel to d 6= 0 through the point with vector p0 is given by

p = p0 + td t any scalar

In other words, the point P with vector p is on this line if and only if a real number t exists
such that p = p0 + td.



214 Vector Geometry

In component form the vector equation becomes x
y
z

=

 x0
y0
z0

+ t

 a
b
c


Equating components gives a different description of the line.

Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =

 a
b
c

 6= 0 is given by

x = x0 + ta
y = y0 + tb t any scalar
z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such
that x = x0 + ta, y = y0 + tb, and z = z0 + tc.

Example 4.1.8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, −1, 1).

Solution. Let d =
−→
P0P1 =

 2
1
0

 denote the vector from P0 to P1. Then d is parallel to the

line (P0 and P1 are on the line), so d serves as a direction vector for the line. Using P0 as the
point on the line leads to the parametric equations

x = 2+2t
y =−t t a parameter
z = 1

Note that if P1 is used (rather than P0), the equations are

x = 4+2s
y =−1− s s a parameter
z = 1

These are different from the preceding equations, but this is merely the result of a change of
parameter. In fact, s = t −1.
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Example 4.1.9

Find the equations of the line through P0(3, −1, 2) parallel to the line with equations

x =−1+2t
y = 1+ t
z =−3+4t

Solution. The coefficients of t give a direction vector d =

 2
1
4

 of the given line. Because

the line we seek is parallel to this line, d also serves as a direction vector for the new line. It
passes through P0, so the parametric equations are

x = 3+2t
y =−1+ t
z = 2+4t

Example 4.1.10

Determine whether the following lines intersect and, if so, find the point of intersection.

x = 1−3t x =−1+ s
y = 2+5t y = 3−4s
z = 1+ t z = 1− s

Solution. Suppose P(x, y, z) with vector p lies on both lines. Then 1−3t
2+5t
1+ t

=

 x
y
z

=

 −1+ s
3−4s
1− s

 for some t and s,

where the first (second) equation is because P lies on the first (second) line. Hence the lines
intersect if and only if the three equations

1−3t =−1+ s
2+5t = 3−4s
1+ t = 1− s

have a solution. In this case, t = 1 and s =−1 satisfy all three equations, so the lines do
intersect and the point of intersection is

p =

 1−3t
2+5t
1+ t

=

 −2
7
2


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using t = 1. Of course, this point can also be found from p =

 −1+ s
3−4s
1− s

 using s =−1.

Example 4.1.11

Show that the line through P0(x0, y0) with slope m has direction vector d =

[
1
m

]
and

equation y− y0 = m(x− x0). This equation is called the point-slope formula.

P0(x0, y0)

P1(x1, y1)

x0 x1 = x0 +1O
x

y
Solution. Let P1(x1, y1) be the point on the line one
unit to the right of P0 (see the diagram). Hence x1 = x0 +1.
Then d =

−→
P0P1 serves as direction vector of the line, and

d =

[
x1 − x0
y1 − y0

]
=

[
1

y1 − y0

]
. But the slope m can be

computed as follows:

m = y1−y0
x1−x0

= y1−y0
1 = y1 − y0

Hence d =

[
1
m

]
and the parametric equations are x = x0 + t,

y = y0 +mt. Eliminating t gives y− y0 = mt = m(x− x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =

[
0
1

]
that is not of the

form
[

1
m

]
for any m. This result confirms that the notion of slope makes no sense in this case.

However, the vector method gives parametric equations for the line:

x = x0

y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem

c

b

a

A

B

C

Dp

q

Figure 4.1.14

The Pythagorean theorem was known earlier, but Pythagoras (c. 550
b.c.) is credited with giving the first rigorous, logical, deductive proof
of the result. The proof we give depends on a basic property of similar
triangles: ratios of corresponding sides are equal.
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Theorem 4.1.6: Pythagoras’ Theorem

Given a right-angled triangle with hypotenuse c and sides a and b, then a2 +b2 = c2.

Proof. Let A, B, and C be the vertices of the triangle as in Figure 4.1.14. Draw a perpendicular line
from C to the point D on the hypotenuse, and let p and q be the lengths of BD and DA respectively.
Then DBC and CBA are similar triangles so p

a = a
c . This means a2 = pc. In the same way, the

similarity of DCA and CBA gives q
b = b

c , whence b2 = qc. But then

a2 +b2 = pc+qc = (p+q)c = c2

because p+q = c. This proves Pythagoras’ theorem10.

Exercises for 4.1

Exercise 4.1.1 Compute ‖v‖ if v equals: 2
−1

2

a)

 1
−1

2

b)

 1
0

−1

c)

 −1
0
2

d)

2

 1
−1

2

e) −3

 1
1
2

f)

b.
√

6

d.
√

5

f. 3
√

6

Exercise 4.1.2 Find a unit vector in the direction
of:  7

−1
5

a)

 −2
−1

2

b)

b. 1
3

 −2
−1

2


Exercise 4.1.3

a. Find a unit vector in the direction from 3
−1

4

 to

 1
3
5

.

b. If u 6= 0, for which values of a is au a unit
vector?

Exercise 4.1.4 Find the distance between the fol-
lowing pairs of points. 3

−1
0

 and

 2
−1

1

a)

 2
−1

2

 and

 2
0
1

b)

 −3
5
2

 and

 1
3
3

c)

 4
0

−2

 and

 3
2
0

d)

b.
√

2

d. 3
10There is an intuitive geometrical proof of Pythagoras’ theorem in Example ??.
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Exercise 4.1.5 Use vectors to show that the line
joining the midpoints of two sides of a triangle is
parallel to the third side and half as long.

Exercise 4.1.6 Let A, B, and C denote the three
vertices of a triangle.

a. If E is the midpoint of side BC, show that
−→
AE = 1

2(
−→
AB+

−→
AC)

b. If F is the midpoint of side AC, show that
−→
FE = 1

2
−→
AB

b. −→
FE =

−→
FC +

−→
CE = 1

2
−→
AC + 1

2
−→
CB = 1

2(
−→
AC +

−→
CB) =

1
2
−→
AB

Exercise 4.1.7 Determine whether u and v are
parallel in each of the following cases.

a. u =

 −3
−6

3

; v =

 5
10
−5



b. u =

 3
−6

3

; v =

 −1
2

−1



c. u =

 1
0
1

; v =

 −1
0
1



d. u =

 2
0

−1

; v =

 −8
0
4



b. Yes

d. Yes

Exercise 4.1.8 Let p and q be the vectors of points
P and Q, respectively, and let R be the point whose
vector is p+q. Express the following in terms of p
and q.

−→
QPa) −→

QRb)
−→
RPc) −→

RO where O is the origind)

b. p

d. −(p+q).

Exercise 4.1.9 In each case, find −→
PQ and ‖−→PQ‖.

a. P(1, −1, 3), Q(3, 1, 0)

b. P(2, 0, 1), Q(1, −1, 6)

c. P(1, 0, 1), Q(1, 0, −3)

d. P(1, −1, 2), Q(1, −1, 2)

e. P(1, 0, −3), Q(−1, 0, 3)

f. P(3, −1, 6), Q(1, 1, 4)

b.

 −1
−1

5

,
√

27

d.

 0
0
0

, 0

f.

 −2
2
2

,
√

12

Exercise 4.1.10 In each case, find a point Q such
that −→

PQ has (i) the same direction as v; (ii) the op-
posite direction to v.

a. P(−1, 2, 2), v =

 1
3
1



b. P(3, 0, −1), v =

 2
−1

3



b. (i) Q(5, −1, 2) (ii) Q(1, 1, −4).
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Exercise 4.1.11 Let u =

 3
−1

0

, v =

 4
0
1

, and

w =

 −1
1
5

. In each case, find x such that:

a. 3(2u+x)+w = 2x−v

b. 2(3v−x) = 5w+u−3x

b. x = u−6v+5w =

 −26
4

19



Exercise 4.1.12 Let u =

 1
1
2

, v =

 0
1
2

, and

w =

 1
0

−1

. In each case, find numbers a, b, and c

such that x = au+bv+ cw.

x =

 2
−1

6

a) x =

 1
3
0

b)

b.

 a
b
c

=

 −5
8
6



Exercise 4.1.13 Let u =

 3
−1

0

, v =

 4
0
1

, and

z =

 1
1
1

. In each case, show that there are no

numbers a, b, and c such that:

a. au+bv+ cz =

 1
2
1



b. au+bv+ cz =

 5
6

−1



b. If it holds then

 3a+4b+ c
−a+ c
b+ c

=

 x1
x2
x3

. 3 4 1 x1
−1 0 1 x2

0 1 1 x3

 →

 0 4 4 x1 +3x2
−1 0 1 x2

0 1 1 x3

 If

there is to be a solution then x1 + 3x2 = 4x3
must hold. This is not satisfied.

Exercise 4.1.14 Given P1(2, 1, −2) and
P2(1, −2, 0). Find the coordinates of the point P:

a. 1
5 the way from P1 to P2

b. 1
4 the way from P2 to P1

b. 1
4

 5
−5
−2


Exercise 4.1.15 Find the two points trisecting the
segment between P(2, 3, 5) and Q(8, −6, 2).

Exercise 4.1.16 Let P1(x1, y1, z1) and P2(x2, y2, z2)
be two points with vectors p1 and p2, respectively.
If r and s are positive integers, show that the point
P lying r

r+s the way from P1 to P2 has vector

p =
( s

r+s

)
p1 +

( r
r+s

)
p2

Exercise 4.1.17 In each case, find the point Q:

a. −→
PQ =

 2
0

−3

 and P = P(2, −3, 1)

b. −→
PQ =

 −1
4
7

 and P = P(1, 3, −4)

b. Q(0, 7, 3).

Exercise 4.1.18 Let u=

 2
0

−4

 and v=

 2
1

−2

.

In each case find x:
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a. 2u−‖v‖v = 3
2(u−2x)

b. 3u+7v = ‖u‖2(2x+v)

b. x = 1
40

 −20
−13

14


Exercise 4.1.19 Find all vectors u that are paral-

lel to v =

 3
−2

1

 and satisfy ‖u‖= 3‖v‖.

Exercise 4.1.20 Let P, Q, and R be the vertices of
a parallelogram with adjacent sides PQ and PR. In
each case, find the other vertex S.

a. P(3, −1, −1), Q(1, −2, 0), R(1, −1, 2)

b. P(2, 0, −1), Q(−2, 4, 1), R(3, −1, 0)

b. S(−1, 3, 2).

Exercise 4.1.21 In each case either prove the
statement or give an example showing that it is false.

a. The zero vector 0 is the only vector of length
0.

b. If ‖v−w‖= 0, then v = w.

c. If v =−v, then v = 0.

d. If ‖v‖= ‖w‖, then v = w.

e. If ‖v‖= ‖w‖, then v =±w.

f. If v = tw for some scalar t, then v and w have
the same direction.

g. If v, w, and v+w are nonzero, and v and
v+w parallel, then v and w are parallel.

h. ‖−5v‖=−5‖v‖, for all v.

i. If ‖v‖= ‖2v‖, then v = 0.

j. ‖v+w‖= ‖v‖+‖w‖, for all v and w.

b. T. ‖v−w‖= 0 implies that v−w = 0.

d. F. ‖v‖= ‖−v‖ for all v but v=−v only holds
if v = 0.

f. F. If t < 0 they have the opposite direction.

h. F. ‖−5v‖= 5‖v‖ for all v, so it fails if v 6= 0.

j. F. Take w =−v where v 6= 0.

Exercise 4.1.22 Find the vector and parametric
equations of the following lines.

a. The line parallel to

 2
−1

0

 and passing

through P(1, −1, 3).

b. The line passing through P(3, −1, 4) and
Q(1, 0, −1).

c. The line passing through P(3, −1, 4) and
Q(3, −1, 5).

d. The line parallel to

 1
1
1

 and passing

through P(1, 1, 1).

e. The line passing through P(1, 0, −3) and
parallel to the line with parametric equations
x =−1+2t, y = 2− t, and z = 3+3t.

f. The line passing through P(2, −1, 1) and
parallel to the line with parametric equations
x = 2− t, y = 1, and z = t.

g. The lines through P(1, 0, 1) that meet the line

with vector equation p =

 1
2
0

+ t

 2
−1

2

 at

points at distance 3 from P0(1, 2, 0).

b.

 3
−1

4

+ t

 2
−1

5

; x = 3 + 2t, y = −1 − t,

z = 4+5t
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d.

 1
1
1

+ t

 1
1
1

; x = y = z = 1+ t

f.

 2
−1

1

+ t

 −1
0
1

; x = 2− t, y =−1, z = 1+ t

Exercise 4.1.23 In each case, verify that the
points P and Q lie on the line.

a. x = 3−4t P(−1, 3, 0), Q(11, 0, 3)
y = 2+ t
z = 1− t

b. x = 4− t P(2, 3, −3), Q(−1, 3, −9)
y = 3
z = 1−2t

b. P corresponds to t = 2; Q corresponds to t = 5.

Exercise 4.1.24 Find the point of intersection (if
any) of the following pairs of lines.

a. x = 3+ t x = 4+2s
y = 1−2t y = 6+3s
z = 3+3t z = 1+ s

b.
x = 1− t x = 2s
y = 2+2t y = 1+ s
z =−1+3t z = 3

c.

 x
y
z

 =

 3
−1

2

 + t

 1
1

−1

  x
y
z

 = 1
1

−2

+ s

 2
0
3



d.

 x
y
z

=

 4
−1

5

+t

 1
0
1

  x
y
z

=

 2
−7
12

+

s

 0
−2

3



b. No intersection

d. P(2, −1, 3); t =−2, s =−3

Exercise 4.1.25 Show that if a line passes through
the origin, the vectors of points on the line are all
scalar multiples of some fixed nonzero vector.

Exercise 4.1.26 Show that every line parallel to
the z axis has parametric equations x = x0, y = y0,
z = t for some fixed numbers x0 and y0.

Exercise 4.1.27 Let d =

 a
b
c

 be a vector where

a, b, and c are all nonzero. Show that the equa-
tions of the line through P0(x0, y0, z0) with direction
vector d can be written in the form

x−x0
a = y−y0

b = z−z0
c

This is called the symmetric form of the equa-
tions.

Exercise 4.1.28 A parallelogram has sides AB, BC,
CD, and DA. Given A(1, −1, 2), C(2, 1, 0), and the
midpoint M(1, 0, −3) of AB, find −→

BD.

Exercise 4.1.29 Find all points C on the line
through A(1, −1, 2) and B = (2, 0, 1) such that
‖−→AC‖= 2‖−→BC‖.
P(3, 1, 0) or P(5

3 , −1
3 , 4

3)

Exercise 4.1.30 Let A, B, C, D, E, and F be the
vertices of a regular hexagon, taken in order. Show
that −→

AB+
−→
AC+

−→
AD+

−→
AE +

−→
AF = 3

−→
AD.

Exercise 4.1.31

a. Let P1, P2, P3, P4, P5, and P6 be six points
equally spaced on a circle with centre C. Show
that

−→
CP1 +

−→
CP2 +

−→
CP3 +

−→
CP4 +

−→
CP5 +

−→
CP6 = 0

b. Show that the conclusion in part (a) holds for
any even set of points evenly spaced on the
circle.

c. Show that the conclusion in part (a) holds for
three points.

d. Do you think it works for any finite set of
points evenly spaced around the circle?
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b. −→
CPk =−−→

CPn+k if 1 ≤ k ≤ n, where there are 2n
points.

Exercise 4.1.32 Consider a quadrilateral with ver-
tices A, B, C, and D in order (as shown in the dia-
gram).

A B

CD

If the diagonals AC and BD bisect each other,
show that the quadrilateral is a parallelogram. (This
is the converse of Example 4.1.2.) [Hint: Let E be
the intersection of the diagonals. Show that −→AB=

−→
DC

by writing −→
AB =

−→
AE +

−→
EB.]

Exercise 4.1.33 Consider the parallelogram ABCD
(see diagram), and let E be the midpoint of side AD.

A

B

C

D

E

F

Show that BE and AC trisect each other; that
is, show that the intersection point is one-third of
the way from E to B and from A to C. [Hint:
If F is one-third of the way from A to C, show
that 2

−→
EF =

−→
FB and argue as in Example 4.1.2.]

−→
DA = 2

−→
EA and 2

−→
AF =

−→
FC, so 2

−→
EF = 2(

−→
EF +

−→
AF) =

−→
DA+

−→
FC =

−→
CB+

−→
FC =

−→
FC+

−→
CB =

−→
FB. Hence −→

EF =
1
2
−→
FB. So F is the trisection point of both AC and

EB.

Exercise 4.1.34 The line from a vertex of a trian-
gle to the midpoint of the opposite side is called a
median of the triangle. If the vertices of a triangle
have vectors u, v, and w, show that the point on
each median that is 1

3 the way from the midpoint to
the vertex has vector 1

3(u+v+w). Conclude that
the point C with vector 1

3(u+v+w) lies on all three
medians. This point C is called the centroid of the
triangle.

Exercise 4.1.35 Given four noncoplanar points
in space, the figure with these points as vertices
is called a tetrahedron. The line from a vertex
through the centroid (see previous exercise) of the
triangle formed by the remaining vertices is called a
median of the tetrahedron. If u, v, w, and x are
the vectors of the four vertices, show that the point
on a median one-fourth the way from the centroid
to the vertex has vector 1

4(u+v+w+x). Conclude
that the four medians are concurrent.
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4.2 Projections and Planes

P

Q

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular
lines is fundamental. As an illustration, suppose a point P and a plane
are given and it is desired to find the point Q that lies in the plane
and is closest to P, as shown in Figure 4.2.1. Clearly, what is required
is to find the line through P that is perpendicular to the plane and
then to obtain Q as the point of intersection of this line with the
plane. Finding the line perpendicular to the plane requires a way
to determine when two vectors are perpendicular. This can be done
using the idea of the dot product of two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in R3

Given vectors v =

 x1
y1
z1

 and w =

 x2
y2
z2

, their dot product v ·w is a number defined

v ·w = x1x2 + y1y2 + z1z2 = vT w

Because v ·w is a number, it is sometimes called the scalar product of v and w.11

Example 4.2.1

If v =

 2
−1

3

 and w =

 1
4

−1

, then v ·w = 2 ·1+(−1) ·4+3 · (−1) =−5.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1
Let u, v, and w denote vectors in R3 (or R2).

1. v ·w is a real number.

2. v ·w = w ·v.

3. v ·0 = 0 = 0 ·v.

4. v ·v = ‖v‖2.

11Similarly, if v =

[
x1
y1

]
and w =

[
x2
y2

]
in R2, then v ·w = x1x2 + y1y2.
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5. (kv) ·w = k(w ·v) = v · (kw) for all scalars k.

6. u · (v±w) = u ·v±u ·w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are
properties of matrix arithmetic (because w ·v = vT w), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

3u · (2v−3w+4z) = 6(u ·v)−9(u ·w)+12(u ·z)

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that ‖v−3w‖2 = 1 when ‖v‖= 2, ‖w‖= 1, and v ·w = 2.

Solution. We apply Theorem 4.2.1 several times:

‖v−3w‖2 = (v−3w) · (v−3w)

= v · (v−3w)−3w · (v−3w)

= v ·v−3(v ·w)−3(w ·v)+9(w ·w)

= ‖v‖2 −6(v ·w)+9‖w‖2

= 4−12+9 = 1

There is an intrinsic description of the dot product of two nonzero vectors in R3. To understand
it we require the following result from trigonometry.

Law of Cosines
If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

c2 = a2 +b2 −2abcosθ

a
c

b

p

θ q b−q

Figure 4.2.2

Proof. We prove it when is θ acute, that is 0 ≤ θ < π

2 ; the obtuse
case is similar. In Figure 4.2.2 we have p = asinθ and q = acosθ .
Hence Pythagoras’ theorem gives

c2 = p2 +(b−q)2 = a2 sin2
θ +(b−acosθ)2

= a2(sin2
θ + cos2

θ)+b2 −2abcosθ

The law of cosines follows because sin2
θ +cos2 θ = 1 for any angle θ .
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v

w

θ

θ obtuse

v

w
θ

θ acute

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a
right angle (because cos π

2 = 0).
Now let v and w be nonzero vectors positioned with a common

tail as in Figure 4.2.3. Then they determine a unique angle θ in the
range

0 ≤ θ ≤ π

This angle θ will be called the angle between v and w. Fig-
ure 4.2.3 illustrates when θ is acute (less than π

2 ) and obtuse (greater
than π

2 ). Clearly v and w are parallel if θ is either 0 or π. Note that
we do not define the angle between v and w if one of these vectors is
0.

The next result gives an easy way to compute the angle between two nonzero vectors using the
dot product.

Theorem 4.2.2
Let v and w be nonzero vectors. If θ is the angle between v and w, then

v ·w = ‖v‖‖w‖cosθ

v

w

v−w
θ

Figure 4.2.4

Proof. We calculate ‖v−w‖2 in two ways. First apply the law of
cosines to the triangle in Figure 4.2.4 to obtain:

‖v−w‖2 = ‖v‖2 +‖w‖2 −2‖v‖‖w‖cosθ

On the other hand, we use Theorem 4.2.1:

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w
= ‖v‖2 −2(v ·w)+‖w‖2

Comparing these we see that −2‖v‖‖w‖cosθ =−2(v ·w), and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of v ·w because
‖v‖, ‖w‖, and the angle θ between v and w do not depend on the choice of coordinate system.
Moreover, since ‖v‖ and ‖w‖ are nonzero (v and w are nonzero vectors), it gives a formula for the
cosine of the angle θ :

cosθ = v·w
‖v‖‖w‖ (4.1)

Since 0 ≤ θ ≤ π, this can be used to find θ .
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Example 4.2.3

Compute the angle between u =

 −1
1
2

 and v =

 2
1

−1

.

2π

3

(
−1
2 ,

√
3

2

)

−1
2

O
x

y
Solution. Compute cosθ = v·w

‖v‖‖w‖ =
−2+1−2√

6
√

6
=−1

2 . Now
recall that cosθ and sinθ are defined so that (cosθ , sinθ )
is the point on the unit circle determined by the angle θ

(drawn counterclockwise, starting from the positive x axis). In
the present case, we know that cosθ =−1

2 and that 0 ≤ θ ≤ π.
Because cos π

3 = 1
2 , it follows that θ = 2π

3 (see the diagram).

If v and w are nonzero, equation (4.1) shows that cosθ has the same sign as v ·w, so

v ·w > 0 if and only if θ is acute (0 ≤ θ < π

2 )
v ·w < 0 if and only if θ is obtuse (π

2 < θ ≤ 0)
v ·w = 0 if and only if θ = π

2

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in
linear algebra:

Definition 4.5 Orthogonal Vectors in R3

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between
them is π

2 .

Since v ·w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 4.2.3
Two vectors v and w are orthogonal if and only if v ·w = 0.

Example 4.2.4

Show that the points P(3, −1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right
triangle.

Solution. The vectors along the sides of the triangle are

−→
PQ =

 1
2
3

 ,
−→
PR =

 3
1
3

 , and −→
QR =

 2
−1

0


Evidently −→

PQ ·−→QR = 2−2+0 = 0, so −→
PQ and −→

QR are orthogonal vectors. This means sides
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PQ and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems
involving perpendicular lines.

Example 4.2.5

A parallelogram with sides of equal length is called a rhombus. Show that the diagonals of
a rhombus are perpendicular.

v

u
u−v

u+v

Solution. Let u and v denote vectors along two adjacent
sides of a rhombus, as shown in the diagram. Then the
diagonals are u−v and u+v, and we compute

(u−v) · (u+v) = u · (u+v)−v · (u+v)
= u ·u+u ·v−v ·u−v ·v
= ‖u‖2 −‖v‖2

= 0

because ‖u‖= ‖v‖ (it is a rhombus). Hence u−v and u+v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal
vectors. Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30◦ to the horizontal as in
the diagram. Neglecting friction, how much force is required to keep the block from sliding
down the surface?

30◦

30◦

w

w1

w2

Solution. Let w denote the weight (force due to gravity)
exerted on the block. Then ‖w‖ = 10 kilograms and the
direction of w is vertically down as in the diagram. The
idea is to write w as a sum w = w1 +w2 where w1 is parallel
to the inclined surface and w2 is perpendicular to the surface.
Since there is no friction, the force required is −w1 because

the force w2 has no effect parallel to the surface. As the angle between w and w2 is 30◦ in
the diagram, we have ‖w1‖

‖w‖ = sin30◦ = 1
2 . Hence ‖w1‖= 1

2‖w‖= 1
210 = 5. Thus the required

force has a magnitude of 5 kilograms weight directed up the surface.
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u

u1
Q

P

P1

d
u−u1

(a)

u

u1
Q

P

P1

d

u−u1

(b)
Figure 4.2.5

If a nonzero vector d is specified, the key idea in Example 4.2.6 is
to be able to write an arbitrary vector u as a sum of two vectors,

u = u1 +u2

where u1 is parallel to d and u2 = u−u1 is orthogonal to d. Suppose
that u and d 6= 0 emanate from a common tail Q (see Figure 4.2.5).
Let P be the tip of u, and let P1 denote the foot of the perpendicular
from P to the line through Q parallel to d.

Then u1 =
−→
QP1 has the required properties:

1. u1 is parallel to d.

2. u2 = u−u1 is orthogonal to d.

3. u = u1 +u2.

Definition 4.6 Projection in R3

The vector u1 =
−→
QP1 in Figure 4.2.5 is called the projection of u on d. It is denoted

u1 = projd u

In Figure 4.2.5(a) the vector u1 = projd u has the same direction as d; however, u1 and d have
opposite directions if the angle between u and d is greater than π

2 (Figure 4.2.5(b)). Note that the
projection u1 = projd u is zero if and only if u and d are orthogonal.

Calculating the projection of u on d 6= 0 is remarkably easy.

Theorem 4.2.4
Let u and d 6= 0 be vectors.

1. The projection of u on d is given by projd u = u·d
‖d‖2 d.

2. The vector u− projd u is orthogonal to d.

Proof. The vector u1 = projd u is parallel to d and so has the form u1 = td for some scalar t. The
requirement that u−u1 and d are orthogonal determines t. In fact, it means that (u−u1) ·d = 0
by Theorem 4.2.3. If u1 = td is substituted here, the condition is

0 = (u− td) ·d = u ·d− t(d ·d) = u ·d− t‖d‖2

It follows that t = u·d
‖d‖2 , where the assumption that d 6= 0 guarantees that ‖d‖2 6= 0.
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Example 4.2.7

Find the projection of u =

 2
−3

1

 on d =

 1
−1

3

 and express u = u1 +u2 where u1 is

parallel to d and u2 is orthogonal to d.

Solution. The projection u1 of u on d is

u1 = projd u = u·d
‖d‖2 d = 2+3+3

12+(−1)2+32

 1
−1

3

= 8
11

 1
−1

3



Hence u2 = u−u1 =
1
11

 14
−25
−13

, and this is orthogonal to d by Theorem 4.2.4

(alternatively, observe that d ·u2 = 0). Since u = u1 +u2, we are done.

Example 4.2.8

u
u1

u−u1

Q

P(1, 3, −2)

P0(2, 0, −1)

d

Find the shortest distance (see diagram) from the point P(1, 3, −2)

to the line through P0(2, 0, −1) with direction vector d =

 1
−1

0

.

Also find the point Q that lies on the line and is closest to P.

Solution. Let u =

 1
3

−2

−

 2
0

−1

=

 −1
3

−1

 denote the vector from P0 to P, and let u1

denote the projection of u on d. Thus

u1 =
u·d
‖d‖2 d = −1−3+0

12+(−1)2+02 d =−2d =

 −2
2
0


by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the
distance is

‖−→QP‖= ‖u−u1‖=

∥∥∥∥∥∥
 1

1
−1

∥∥∥∥∥∥=
√

3

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, respectively.

Then p0 =

 2
0

−1

 and q = p0 +u1 =

 0
2

−1

. Hence Q(0, 2, −1) is the required point. It

can be checked that the distance from Q to P is
√

3, as expected.
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Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there
is exactly one containing any given point. This fact can be used to give a very simple description
of a plane. To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane
A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in the
plane.

n

P0

P

Figure 4.2.6

For example, the coordinate vector k is a normal for the x-y plane.
Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there

is a unique plane through P0 with normal n, shaded in Figure 4.2.6.
A point P = P(x, y, z) lies on this plane if and only if the vector
−→
P0P is orthogonal to n—that is, if and only if n · −→P0P = 0. Because
−→
P0P =

 x− x0
y− y0
z− z0

 this gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =

 a
b
c

 6= 0 as a normal vector is given by

a(x− x0)+b(y− y0)+ c(z− z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this
equation.

Example 4.2.9

Find an equation of the plane through P0(1, −1, 3) with n =

 3
−1

2

 as normal.

Solution. Here the general scalar equation becomes

3(x−1)− (y+1)+2(z−3) = 0

This simplifies to 3x− y+2z = 10.
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If we write d = ax0+by0+cz0, the scalar equation shows that every plane with normal n=

 a
b
c


has a linear equation of the form

ax+by+ cz = d (4.2)

for some constant d. Conversely, the graph of this equation is a plane with n =

 a
b
c

 as a normal

vector (assuming that a, b, and c are not all zero).

Example 4.2.10

Find an equation of the plane through P0(3, −1, 2) that is parallel to the plane with
equation 2x−3y = 6.

Solution. The plane with equation 2x−3y = 6 has normal n =

 2
−3

0

. Because the two

planes are parallel, n serves as a normal for the plane we seek, so the equation is 2x−3y = d
for some d by Equation 4.2. Insisting that P0(3, −1, 2) lies on the plane determines d; that
is, d = 2 ·3−3(−1) = 9. Hence, the equation is 2x−3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =

 x0
y0
z0

 and p =

 x
y
z

. Given a

nonzero vector n, the scalar equation of the plane through P0(x0, y0, z0) with normal n =

 a
b
c


takes the vector form:

Vector Equation of a Plane

The plane with normal n 6= 0 through the point with vector p0 is given by

n · (p−p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this
condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal n has vector equation n ·p = d for some number d.

This is useful in the second solution of Example 4.2.11.
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Example 4.2.11

Find the shortest distance from the point P(2, 1, −3) to the plane with equation
3x− y+4z = 1. Also find the point Q on this plane closest to P.

u

P0(0, −1, 0)
Q(x, y, z)

P(2, 1, −3)u1

n
Solution 1. The plane in question has normal n =

 3
−1

4

.

Choose any point P0 on the plane—say P0(0, −1, 0)—and
let Q(x, y, z) be the point on the plane closest to P (see the

diagram). The vector from P0 to P is u =

 2
2

−3

. Now erect

n with its tail at P0. Then −→
QP = u1 and u1 is the projection of

u on n:

u1 =
n·u
‖n‖2 n = −8

26

 3
−1

4

= −4
13

 3
−1

4


Hence the distance is ‖−→QP‖= ‖u1‖= 4

√
26

13 . To calculate the point Q, let q =

 x
y
z

 and

p0 =

 0
−1

0

 be the vectors of Q and P0. Then

q = p0 +u−u1 =

 0
−1

0

+

 2
2

−3

+ 4
13

 3
−1

4

=


38
13
9

13
−23
13


This gives the coordinates of Q(38

13 , 9
13 , −23

13 ).

Solution 2. Let q =

 x
y
z

 and p =

 2
1

−3

 be the vectors of Q and P. Then Q is on the

line through P with direction vector n, so q = p+ tn for some scalar t. In addition, Q lies on
the plane, so n ·q = 1. This determines t:

1 = n ·q = n · (p+ tn) = n ·p+ t‖n‖2 =−7+ t(26)

This gives t = 8
26 = 4

13 , so x
y
z

= q = p+ tn =

 2
1

−3

+ 4
13

 3
−1

4

+ 1
13

 38
9

−23


as before. This determines Q (in the diagram), and the reader can verify that the required
distance is ‖−→QP‖= 4

13

√
26, as before.
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The Cross Product

If P, Q, and R are three distinct points in R3 that are not all on some line, it is clear geometrically
that there is a unique plane containing all three. The vectors −→

PQ and −→
PR both lie in this plane, so

finding a normal amounts to finding a nonzero vector orthogonal to both −→
PQ and −→

PR. The cross
product provides a systematic way to do this.

Definition 4.8 Cross Product

Given vectors v1 =

 x1
y1
z1

 and v2 =

 x2
y2
z2

, define the cross product v1 ×v2 by

v1 ×v2 =

 y1z2 − z1y2
−(x1z2 − z1x2)

x1y2 − y1x2



x

y

z

i jk

O

Figure 4.2.7

(Because it is a vector, v1 ×v2 is often called the vector product.)
There is an easy way to remember this definition using the coordi-
nate vectors:

i =

 1
0
0

 , j =

 0
1
0

 , and k =

 0
0
1


They are vectors of length 1 pointing along the positive x, y, and z
axes, respectively, as in Figure 4.2.7. The reason for the name is that
any vector can be written as x

y
z

= xi+ yj+ zk

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =

 x1
y1
z1

 and v2 =

 x2
y2
z2

 are two vectors, then

v1 ×v2 = det

 i x1 x2
j y1 y2
k z1 z2

=

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣ i− ∣∣∣∣ x1 x2
z1 z2

∣∣∣∣ j+ ∣∣∣∣ x1 x2
y1 y2

∣∣∣∣k
where the determinant is expanded along the first column.
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Example 4.2.12

If v =

 2
−1

4

 and w =

 1
3
7

, then

v1 ×v2 = det

 i 2 1
j −1 3
k 4 7

=

∣∣∣∣ −1 3
4 7

∣∣∣∣ i− ∣∣∣∣ 2 1
4 7

∣∣∣∣ j+ ∣∣∣∣ 2 1
−1 3

∣∣∣∣k
=−19i−10j+7k

=

 −19
−10

7



Observe that v×w is orthogonal to both v and w in Example 4.2.12. This holds in general
as can be verified directly by computing v · (v×w) and w · (v×w), and is recorded as the first
part of the following theorem. It will follow from a more general result which, together with the
second part, will be proved in Section 4.3 where a more detailed study of the cross product will be
undertaken.

Theorem 4.2.5
Let v and w be vectors in R3.

1. v×w is a vector orthogonal to both v and w.

2. If v and w are nonzero, then v×w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

v ·w = 0 if and only if v and w are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, −2), Q(1, 1, 5), and R(2, −2, 3).

Solution. The vectors −→
PQ =

 0
−2

7

 and −→
PR =

 1
−5

5

 lie in the plane, so

−→
PQ×−→

PR = det

 i 0 1
j −2 −5
k 7 5

= 25i+7j+2k =

 25
7
2


is a normal for the plane (being orthogonal to both −→

PQ and −→
PR). Hence the plane has

equation
25x+7y+2z = d for some number d.
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Since P(1, 3, −2) lies in the plane we have 25 ·1+7 ·3+2(−2) = d. Hence d = 42 and the
equation is 25x+7y+2z = 42. Incidentally, the same equation is obtained (verify) if −→QP and
−→
QR, or −→

RP and −→
RQ, are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines x
y
z

=

 1
0

−1

+ t

 2
0
1

 and

 x
y
z

=

 3
1
0

+ s

 1
1

−1


Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are d1 =

 2
0
1

 and d2 =

 1
1

−1

, so

n = d1 ×d2 = det

 i 2 1
j 0 1
k 1 −1

=

 −1
3
2



u

P2
n

B

A
P1

is perpendicular to both lines. Consider the plane shaded
in the diagram containing the first line with n as normal.
This plane contains P1(1, 0, −1) and is parallel to the second
line. Because P2(3, 1, 0) is on the second line, the distance in
question is just the shortest distance between P2(3, 1, 0) and

this plane. The vector u from P1 to P2 is u =
−→
P1P2 =

 2
1
1


and so, as in Example 4.2.11, the distance is the length of the projection of u on n.

distance =
∥∥∥ u·n
‖n‖2 n

∥∥∥= |u·n|
‖n‖ = 3√

14
= 3

√
14

14

Note that it is necessary that n = d1 ×d2 be nonzero for this calculation to be possible. As
is shown later (Theorem 4.3.4), this is guaranteed by the fact that d1 and d2 are not
parallel.
The points A and B have coordinates A(1+2t, 0, t −1) and B(3+ s, 1+ s, −s) for some

s and t, so −→
AB =

 2+ s−2t
1+ s

1− s− t

. This vector is orthogonal to both d1 and d2, and the

conditions −→AB ·d1 = 0 and −→
AB ·d2 = 0 give equations 5t − s = 5 and t −3s = 2. The solution is

s = −5
14 and t = 13

14 , so the points are A(40
14 , 0, −1

14 ) and B(37
14 , 9

14 , 5
14). We have ‖−→AB‖= 3

√
14

14 ,
as before.
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Exercises for 4.2

Exercise 4.2.1 Compute u ·v where:

a. u =

 2
−1

3

, v =

 −1
1
1



b. u =

 1
2

−1

, v = u

c. u =

 1
1

−3

, v =

 2
−1

1



d. u =

 3
−1

5

, v =

 6
−7
−5



e. u =

 x
y
z

, v =

 a
b
c



f. u =

 a
b
c

, v = 0

b. 6

d. 0

f. 0

Exercise 4.2.2 Find the angle between the follow-
ing pairs of vectors.

a. u =

 1
0
3

, v =

 2
0
1



b. u =

 3
−1

0

, v =

 −6
2
0



c. u =

 7
−1

3

, v =

 1
4

−1



d. u =

 2
1

−1

, v =

 3
6
3



e. u =

 1
−1

0

, v =

 0
1
1



f. u =

 0
3
4

, v =

 5
√

2
−7
−1



b. π or 180◦

d. π

3 or 60◦

f. 2π

3 or 120◦

Exercise 4.2.3 Find all real numbers x such that:

a.

 2
−1

3

 and

 x
−2

1

 are orthogonal.

b.

 2
−1

1

 and

 1
x
2

 are at an angle of π

3 .

b. 1 or −17

Exercise 4.2.4 Find all vectors v =

 x
y
z

 orthog-

onal to both:

a. u1 =

 −1
−3

2

, u2 =

 0
1
1



b. u1 =

 3
−1

2

, u2 =

 2
0
1



c. u1 =

 2
0

−1

, u2 =

 −4
0
2


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d. u1 =

 2
−1

3

, u2 =

 0
0
0



b. t

 −1
1
2



d. s

 1
2
0

+ t

 0
3
1


Exercise 4.2.5 Find two orthogonal vectors that

are both orthogonal to v =

 1
2
0

.

Exercise 4.2.6 Consider the triangle with vertices
P(2, 0, −3), Q(5, −2, 1), and R(7, 5, 3).

a. Show that it is a right-angled triangle.

b. Find the lengths of the three sides and verify
the Pythagorean theorem.

b. 29+57 = 86

Exercise 4.2.7 Show that the triangle with ver-
tices A(4, −7, 9), B(6, 4, 4), and C(7, 10, −6) is not
a right-angled triangle.

Exercise 4.2.8 Find the three internal angles of
the triangle with vertices:

a. A(3, 1, −2), B(3, 0, −1), and C(5, 2, −1)

b. A(3, 1, −2), B(5, 2, −1), and C(4, 3, −3)

b. A = B =C = π

3 or 60◦

Exercise 4.2.9 Show that the line through
P0(3, 1, 4) and P1(2, 1, 3) is perpendicular to the
line through P2(1, −1, 2) and P3(0, 5, 3).

Exercise 4.2.10 In each case, compute the projec-
tion of u on v.

a. u =

 5
7
1

, v =

 2
−1

3



b. u =

 3
−2

1

, v =

 4
1
1



c. u =

 1
−1

2

, v =

 3
−1

1



d. u =

 3
−2
−1

, v =

 −6
4
2



b. 11
18v

d. −1
2v

Exercise 4.2.11 In each case, write u = u1 +u2,
where u1 is parallel to v and u2 is orthogonal to v.

a. u =

 2
−1

1

, v =

 1
−1

3



b. u =

 3
1
0

, v =

 −2
1
4



c. u =

 2
−1

0

, v =

 3
1

−1



d. u =

 3
−2

1

, v =

 −6
4

−1



b. 5
21

 2
−1
−4

+ 1
21

 53
26
20



d. 27
53

 6
−4

1

+ 1
53

 −3
2

26


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Exercise 4.2.12 Calculate the distance from the
point P to the line in each case and find the point Q
on the line closest to P.

a. P(3, 2−1)

line:

 x
y
z

=

 2
1
3

+ t

 3
−1
−2


b. P(1, −1, 3)

line:

 x
y
z

=

 1
0

−1

+ t

 3
1
4



b. 1
26

√
5642, Q(71

26 , 15
26 , 34

26)

Exercise 4.2.13 Compute u×v where:

a. u =

 1
2
3

, v =

 1
1
2



b. u =

 3
−1

0

, v =

 −6
2
0



c. u =

 3
−2

1

, v =

 1
1

−1



d. u =

 2
0

−1

, v =

 1
4
7



b.

 0
0
0



b.

 4
−15

8


Exercise 4.2.14 Find an equation of each of the
following planes.

a. Passing through A(2, 1, 3), B(3, −1, 5), and
C(1, 2, −3).

b. Passing through A(1, −1, 6), B(0, 0, 1), and
C(4, 7, −11).

c. Passing through P(2, −3, 5) and parallel to
the plane with equation 3x−2y− z = 0.

d. Passing through P(3, 0, −1) and parallel to
the plane with equation 2x− y+ z = 3.

e. Containing P(3, 0, −1) and the line x
y
z

=

 0
0
2

+ t

 1
0
1

 .

f. Containing P(2, 1, 0) and the line

 x
y
z

 = 3
−1

2

+ t

 1
0

−1

 .

g. Containing the lines

 x
y
z

 =

 1
−1

2

 +

t

 1
1
1

 and x
y
z

=

 0
0
2

+ t

 1
−1

0

.

h. Containing the lines

 x
y
z

 =

 3
1
0

 +

t

 1
−1

3

 and

 x
y
z

=

 0
−2

5

+ t

 2
1

−1

.

i. Each point of which is equidistant from
P(2, −1, 3) and Q(1, 1, −1).

j. Each point of which is equidistant from
P(0, 1, −1) and Q(2, −1, −3).

b. −23x+32y+11z = 11

d. 2x− y+ z = 5

f. 2x+3y+2z = 7

h. 2x−7y−3z =−1
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j. x− y− z = 3

Exercise 4.2.15 In each case, find a vector equa-
tion of the line.

a. Passing through P(3, −1, 4) and perpendicu-
lar to the plane 3x−2y− z = 0.

b. Passing through P(2, −1, 3) and perpendicu-
lar to the plane 2x+ y = 1.

c. Passing through P(0, 0, 0) and perpendicu-

lar to the lines

 x
y
z

=

 1
1
0

+t

 2
0

−1

 and x
y
z

=

 2
1

−3

+ t

 1
−1

5

.

d. Passing through P(1, 1, −1), and perpendicu-

lar to the lines

 x
y
z

=

 2
0
1

+t

 1
1

−2

 and x
y
z

=

 5
5

−2

+ t

 1
2

−3

.

e. Passing through P(2, 1, −1), intersecting the

line

 x
y
z

 =

 1
2

−1

+ t

 3
0
1

, and perpen-

dicular to that line.

f. Passing through P(1, 1, 2), intersecting the

line

 x
y
z

=

 2
1
0

+ t

 1
1
1

, and perpendic-

ular to that line.

b.

 x
y
z

=

 2
−1

3

+ t

 2
1
0



d.

 x
y
z

=

 1
1

−1

+ t

 1
1
1



f.

 x
y
z

=

 1
1
2

+ t

 4
1

−5



Exercise 4.2.16 In each case, find the shortest
distance from the point P to the plane and find the
point Q on the plane closest to P.

a. P(2, 3, 0); plane with equation 5x+ y+ z = 1.

b. P(3, 1, −1); plane with equation 2x+y−z= 6.

b.
√

6
3 , Q(7

3 , 2
3 , −2

3 )

Exercise 4.2.17

a. Does the line through P(1, 2, −3) with di-

rection vector d =

 1
2

−3

 lie in the plane

2x− y− z = 3? Explain.

b. Does the plane through P(4, 0, 5), Q(2, 2, 1),
and R(1, −1, 2) pass through the origin? Ex-
plain.

b. Yes. The equation is 5x−3y−4z = 0.

Exercise 4.2.18 Show that every plane contain-
ing P(1, 2, −1) and Q(2, 0, 1) must also contain
R(−1, 6, −5).

Exercise 4.2.19 Find the equations of the line of
intersection of the following planes.

a. 2x−3y+2z = 5 and x+2y− z = 4.

b. 3x+ y−2z = 1 and x+ y+ z = 5.

b. (−2, 7, 0)+ t(3, −5, 2)

Exercise 4.2.20 In each case, find all points of
intersection of the given plane and the line x

y
z

=

 1
−2

3

+ t

 2
5

−1

.
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x−3y+2z = 4a) 2x− y− z = 5b)

3x− y+ z = 8c) −x−4y−3z = 6d)

b. None

d. P(13
19 , −78

19 , 65
19)

Exercise 4.2.21 Find the equation of all planes:

a. Perpendicular to the line x
y
z

=

 2
−1

3

+ t

 2
1
3

.

b. Perpendicular to the line x
y
z

=

 1
0

−1

+ t

 3
0
2

.

c. Containing the origin.

d. Containing P(3, 2, −4).

e. Containing P(1, 1, −1) and Q(0, 1, 1).

f. Containing P(2, −1, 1) and Q(1, 0, 0).

g. Containing the line x
y
z

=

 2
1
0

+ t

 1
−1

0

.

h. Containing the line x
y
z

=

 3
0
2

+ t

 1
−2
−1

.

b. 3x+2z = d, d arbitrary

d. a(x−3)+b(y−2)+c(z+4) = 0; a, b, and c not
all zero

f. ax+by+(b−a)z = a; a and b not both zero

h. ax+by+(a−2b)z = 5a−4b; a and b not both
zero

Exercise 4.2.22 If a plane contains two distinct
points P1 and P2, show that it contains every point
on the line through P1 and P2.

Exercise 4.2.23 Find the shortest distance be-
tween the following pairs of parallel lines.

a.

 x
y
z

=

 2
−1

3

+ t

 1
−1

4

 ; x
y
z

=

 1
0
1

+ t

 1
−1

4



b.

 x
y
z

=

 3
0
2

+ t

 3
1
0

 ; x
y
z

=

 −1
2
2

+ t

 3
1
0



b.
√

10

Exercise 4.2.24 Find the shortest distance be-
tween the following pairs of nonparallel lines and find
the points on the lines that are closest together.

a.

 x
y
z

=

 3
0
1

+ s

 2
1

−3

 ; x
y
z

=

 1
1

−1

+ t

 1
0
1



b.

 x
y
z

=

 1
−1

0

+ s

 1
1
1

 ; x
y
z

=

 2
−1

3

+ t

 3
1
0



c.

 x
y
z

=

 3
1

−1

+ s

 1
1

−1

 ; x
y
z

=

 1
2
0

+ t

 1
0
2


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d.

 x
y
z

=

 1
2
3

+ s

 2
0

−1

 ; x
y
z

=

 3
−1

0

+ t

 1
1
0



b.
√

14
2 , A(3, 1, 2), B(7

2 , −1
2 , 3)

d.
√

6
6 , A(19

3 , 2, 1
3), B(37

6 , 13
6 , 0)

Exercise 4.2.25 Show that two lines in the plane
with slopes m1 and m2 are perpendicular if and only
if
m1m2 =−1. [Hint: Example 4.1.11.]

Exercise 4.2.26

a. Show that, of the four diagonals of a cube, no
pair is perpendicular.

b. Show that each diagonal is perpendicular to
the face diagonals it does not meet.

b. Consider the diagonal d =

 a
a
a

 The six

face diagonals in question are ±

 a
0

−a

,

±

 0
a

−a

, ±

 a
−a

0

. All of these are orthog-

onal to d. The result works for the other di-
agonals by symmetry.

Exercise 4.2.27 Given a rectangular solid with
sides of lengths 1, 1, and

√
2, find the angle between

a diagonal and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with
sides of lengths a, b, and c. Show that it has two or-
thogonal diagonals if and only if the sum of two of a2,
b2, and c2 equals the third.
The four diagonals are (a, b, c), (−a, b, c), (a, −b, c)
and (a, b, −c) or their negatives. The dot products

are ±(−a2+b2+c2), ±(a2−b2+c2), and ±(a2+b2−
c2).

Exercise 4.2.29 Let A, B, and C(2, −1, 1) be the

vertices of a triangle where −→
AB is parallel to

 1
−1

1

,

−→
AC is parallel to

 2
0

−1

, and angle C = 90◦ . Find

the equation of the line through B and C.

Exercise 4.2.30 If the diagonals of a parallelogram
have equal length, show that the parallelogram is a
rectangle.

Exercise 4.2.31 Given v =

 x
y
z

 in component

form, show that the projections of v on i, j, and k
are xi, yj, and zk, respectively.

Exercise 4.2.32

a. Can u ·v=−7 if ‖u‖= 3 and ‖v‖= 2? Defend
your answer.

b. Find u · v if u =

 2
−1

2

, ‖v‖ = 6, and the

angle between u and v is 2π

3 .

Exercise 4.2.33 Show (u+v) · (u−v) = ‖u‖2 −
‖v‖2 for any vectors u and v.

Exercise 4.2.34

a. Show ‖u+v‖2+‖u−v‖2 = 2(‖u‖2+‖v‖2) for
any vectors u and v.

b. What does this say about parallelograms?

b. The sum of the squares of the lengths of the
diagonals equals the sum of the squares of the
lengths of the four sides.

Exercise 4.2.35 Show that if the diagonals of a
parallelogram are perpendicular, it is necessarily a
rhombus. [Hint: Example 4.2.5.]

Exercise 4.2.36 Let A and B be the end points of
a diameter of a circle (see the diagram). If C is any
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point on the circle, show that AC and BC are per-
pendicular. [Hint: Express −→

AB · (−→AB×−→
AC) = 0 and

−→
BC in terms of u =

−→
OA and v =

−→
OC, where O is the

centre.]

O
A B

C

Exercise 4.2.37 Show that u and v are orthogo-
nal, if and only if ‖u+v‖2 = ‖u‖2 +‖v‖2.

Exercise 4.2.38 Let u, v, and w be pairwise or-
thogonal vectors.

a. Show that ‖u+v+w‖2 = ‖u‖2+‖v‖2+‖w‖2.

b. If u, v, and w are all the same length, show
that they all make the same angle with u+
v+w.

b. The angle θ between u and (u+v+w) is given
by cosθ = u·(u+v+w)

‖u‖‖u+v+w‖ =
‖u‖√

‖u‖2+‖v‖2+‖w‖2 =
1√
3

because ‖u‖ = ‖v‖ = ‖w‖. Similar remarks
apply to the other angles.

Exercise 4.2.39

a. Show that n =

[
a
b

]
is orthogonal to every

vector along the line ax+by+ c = 0.

b. Show that the shortest distance from P0(x0, y0)

to the line is |ax0+by0+c|√
a2+b2 . [Hint: If P1 is on the

line, project u =
−→
P1P0 on n.]

b. Let p0, p1 be the vectors of P0, P1, so u =
p0 −p1. Then u ·n = p0 ·n – p1 ·n = (ax0 +
by0)− (ax1 + by1) = ax0 + by0 + c. Hence the
distance is ∥∥∥( u·n

‖n‖2

)
n
∥∥∥= |u·n|

‖n‖

as required.

Exercise 4.2.40 Assume u and v are nonzero vec-
tors that are not parallel. Show that w = ‖u‖v+
‖v‖u is a nonzero vector that bisects the angle be-
tween u and v.

Exercise 4.2.41 Let α, β , and γ be the angles a
vector v 6= 0 makes with the positive x, y, and z axes,
respectively. Then cosα, cosβ , and cosγ are called
the direction cosines of the vector v.

a. If v =

 a
b
c

, show that cosα = a
‖v‖ , cosβ =

b
‖v‖ , and cosγ = c

‖v‖ .

b. Show that cos2 α + cos2 β + cos2 γ = 1.

b. This follows from (a) because ‖v‖2 = a2+b2+
c2.

Exercise 4.2.42 Let v 6= 0 be any nonzero vec-
tor and suppose that a vector u can be written as
u=p+q, where p is parallel to v and q is orthogonal
to v. Show that p must equal the projection of u on
v. [Hint: Argue as in the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let v 6= 0 be a nonzero vector
and let a 6= 0 be a scalar. If u is any vector, show
that the projection of u on v equals the projection
of u on av.

Exercise 4.2.44

a. Show that the Cauchy-Schwarz inequality
|u ·v| ≤ ‖u‖‖v‖ holds for all vectors u and v.
[Hint: |cosθ | ≤ 1 for all angles θ .]

b. Show that |u ·v|= ‖u‖‖v‖ if and only if u and
v are parallel. [Hint: When is cosθ =±1?]

c. Show that |x1x2 + y1y2 + z1z2|
≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2 holds for all num-
bers x1, x2, y1, y2, z1, and z2.

d. Show that |xy+ yz+ zx| ≤ x2 + y2 + z2 for all x,
y, and z.
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e. Show that (x+ y+ z)2 ≤ 3(x2 + y2 + z2) holds
for all x, y, and z.

d. Take

 x1
y1
z1

=

 x
y
z

 and

 x2
y2
z2

=

 y
z
x

 in

(c).

Exercise 4.2.45 Prove that the triangle inequal-
ity ‖u+v‖ ≤ ‖u‖+‖v‖ holds for all vectors u and
v. [Hint: Consider the triangle with u and v as two
sides.]
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4.3 More on the Cross Product

The cross product v×w of two R3-vectors v =

 x1
y1
z1

 and w =

 x2
y2
z2

 was defined in Section 4.2

where we observed that it can be best remembered using a determinant:

v×w = det

 i x1 x2
j y1 y2
k z1 z2

=

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣ i− ∣∣∣∣ x1 x2
z1 z2

∣∣∣∣ j+ ∣∣∣∣ x1 x2
y1 y2

∣∣∣∣k (4.3)

Here i =

 1
0
0

, j =

 0
1
0

, and k =

 1
0
0

 are the coordinate vectors, and the determinant is

expanded along the first column. We observed (but did not prove) in Theorem 4.2.5 that v×w is
orthogonal to both v and w. This follows easily from the next result.

Theorem 4.3.1

If u =

 x0
y0
z0

, v =

 x1
y1
z1

, and w =

 x2
y2
z2

, then u · (v×w) = det

 x0 x1 x2
y0 y1 y2
z0 z1 z2

.

Proof. Recall that u ·(v×w) is computed by multiplying corresponding components of u and v×w
and then adding. Using equation (4.3), the result is:

u · (v×w) = x0

(∣∣∣∣ y1 y2
z1 z2

∣∣∣∣)+ y0

(
−
∣∣∣∣ x1 x2

z1 z2

∣∣∣∣)+ z0

(∣∣∣∣ x1 x2
y1 y2

∣∣∣∣)= det

 x0 x1 x2
y0 y1 y2
z0 z1 z2


where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors
in R3, then

u · (v×w) = det
[

u v w
]

where
[

u v w
]

denotes the matrix with u, v, and w as its columns. Now it is clear that v×w
is orthogonal to both v and w because the determinant of a matrix is zero if two columns are
identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product
follow from properties of determinants (they can also be verified directly).

Theorem 4.3.2
Let u, v, and w denote arbitrary vectors in R3.
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1. u×v is a vector.

2. u×v is orthogonal to both u and v.

3. u×0 = 0 = 0×u.

4. u×u = 0.

5. u×v =−(v×u).

6. (ku)×v = k(u×v) = u× (kv) for any
scalar k.

7. u× (v+w) = (u×v)+(u×w).

8. (v+w)×u = (v×u)+(w×u).

Proof. (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant
of a matrix is zero if one column is zero or if two columns are identical. If two columns are
interchanged, the determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are
left as Exercise 4.3.15.

We now come to a fundamental relationship between the dot and cross products.

Theorem 4.3.3: Lagrange Identity12

If u and v are any two vectors in R3, then

‖u×v‖2 = ‖u‖2‖v‖2 − (u ·v)2

Proof. Given u and v, introduce a coordinate system and write u =

 x1
y1
z1

 and v =

 x2
y2
z2

 in

component form. Then all the terms in the identity can be computed in terms of the components.
The detailed proof is left as Exercise 4.3.14.

An expression for the magnitude of the vector u×v can be easily obtained from the Lagrange
identity. If θ is the angle between u and v, substituting u ·v = ‖u‖‖v‖cosθ into the Lagrange
identity gives

‖u×v‖2 = ‖u‖2‖v‖2 −‖u‖2‖v‖2 cos2
θ = ‖u‖2‖v‖2 sin2

θ

using the fact that 1− cos2 θ = sin2
θ . But sinθ is nonnegative on the range 0 ≤ θ ≤ π, so taking

the positive square root of both sides gives

‖u×v‖= ‖u‖‖v‖sinθ

12Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he
solved a famous problem by inventing an entirely new method, known today as the calculus of variations, and went
on to become one of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and
his Mécanique Analytique is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to
the Berlin Academy by Frederik the Great who asserted that the “greatest mathematician in Europe” should be at
the court of the “greatest king in Europe.” After the death of Frederick, Lagrange went to Paris at the invitation of
Louis XVI. He remained there throughout the revolution and was made a count by Napoleon.
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u

v

‖u‖sinθ

θ

Figure 4.3.1

This expression for ‖u×v‖ makes no reference to a coordi-
nate system and, moreover, it has a nice geometrical interpreta-
tion. The parallelogram determined by the vectors u and v has
base length ‖v‖ and altitude ‖u‖sinθ (see Figure 4.3.1). Hence
the area of the parallelogram formed by u and v is

(‖u‖sinθ)‖v‖= ‖u×v‖

This proves the first part of Theorem 4.3.4.

Theorem 4.3.4
If u and v are two nonzero vectors and θ is the angle between u and v, then

1. ‖u×v‖= ‖u‖‖v‖sinθ = the area of the parallelogram determined by u and v.

2. u and v are parallel if and only if u×v = 0.

Proof of (2). By (1), u×v = 0 if and only if the area of the parallelogram is zero. By Figure 4.3.1
the area vanishes if and only if u and v have the same or opposite direction—that is, if and only if
they are parallel.

Example 4.3.1

P

Q

R

Find the area of the triangle with vertices P(2, 1, 0),
Q(3, −1, 1), and R(1, 0, 1).

Solution. We have −→
RP =

 1
1

−1

 and −→
RQ =

 2
−1

0

. The

area of the triangle is half the area of the parallelogram (see
the diagram), and so equals 1

2‖
−→
RP×−→

RQ‖. We have

−→
RP×−→

RQ = det

 i 1 2
j 1 −1
k −1 0

=

 −1
−2
−3


so the area of the triangle is 1

2‖
−→
RP×−→

RQ‖= 1
2

√
1+4+9 = 1

2

√
14.

v

u×v

h
w

u

Figure 4.3.2

If three vectors u, v, and w are given, they determine a “squashed”
rectangular solid called a parallelepiped (Figure 4.3.2), and it is
often useful to be able to find the volume of such a solid. The base of
the solid is the parallelogram determined by u and v, so it has area
A = ‖u×v‖ by Theorem 4.3.4. The height of the solid is the length
h of the projection of w on u×v. Hence

h =
∣∣∣w·(u×v)
‖u×v‖2

∣∣∣‖u×v‖= |w·(u×v)|
‖u×v‖ = |w·(u×v)|

A
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Thus the volume of the parallelepiped is hA = |w · (u×v)|. This proves

Theorem 4.3.5
The volume of the parallelepiped determined by three vectors w, u, and v (Figure 4.3.2) is
given by |w · (u×v)|.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

w =

 1
2

−1

 , u =

 1
1
0

 , v =

 −2
0
1



Solution. By Theorem 4.3.1, w · (u×v) = det

 1 1 −2
2 1 0

−1 0 1

=−3. Hence the volume is

|w · (u×v)|= |−3|= 3 by Theorem 4.3.5.

y

z
x

O

Left-hand system

y

z

x
O

Right-hand system

Figure 4.3.3

We can now give an intrinsic description of the cross product u×v.
Its magnitude ‖u×v‖= ‖u‖‖v‖sinθ is coordinate-free. If u×v 6= 0,
its direction is very nearly determined by the fact that it is orthogonal
to both u and v and so points along the line normal to the plane
determined by u and v. It remains only to decide which of the two
possible directions is correct.

Before this can be done, the basic issue of how coordinates are as-
signed must be clarified. When coordinate axes are chosen in space,
the procedure is as follows: An origin is selected, two perpendicular
lines (the x and y axes) are chosen through the origin, and a positive
direction on each of these axes is selected quite arbitrarily. Then the
line through the origin normal to this x-y plane is called the z axis,
but there is a choice of which direction on this axis is the positive one.
The two possibilities are shown in Figure 4.3.3, and it is a standard
convention that cartesian coordinates are always right-hand coor-

dinate systems. The reason for this terminology is that, in such a system, if the z axis is grasped
in the right hand with the thumb pointing in the positive z direction, then the fingers curl around
from the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that θ is the angle between them (so 0 ≤ θ ≤ π). Then
the direction of ‖u×v‖ is given by the right-hand rule.
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Right-hand Rule

If the vector u×v is grasped in the right hand and the fingers curl around from u to v
through the angle θ , the thumb points in the direction for u×v.

vθ

c
O

a
b

u

x

y

z

Figure 4.3.4

To indicate why this is true, introduce coordinates in R3 as follows:
Let u and v have a common tail O, choose the origin at O, choose the
x axis so that u points in the positive x direction, and then choose
the y axis so that v is in the x-y plane and the positive y axis is on
the same side of the x axis as v. Then, in this system, u and v have

component form u =

 a
0
0

 and v =

 b
c
0

 where a > 0 and c > 0.

The situation is depicted in Figure 4.3.4. The right-hand rule asserts
that u×v should point in the positive z direction. But our definition
of u×v gives

u×v = det

 i a b
j 0 c
k 0 0

=

 0
0
ac

= (ac)k

and (ac)k has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate
vectors, verify that i× j = k, j×k = i, and k× i = j.

Exercise 4.3.2 Show that u× (v×w) need not
equal (u×v)×w by calculating both when

u =

 1
1
1

 , v =

 1
1
0

 , and w =

 0
0
1


Exercise 4.3.3 Find two unit vectors orthogonal
to both u and v if:

a. u =

 1
2
2

, v =

 2
−1

2



b. u =

 1
2

−1

, v =

 3
1
2



b. ±
√

3
3

 1
−1
−1

.

Exercise 4.3.4 Find the area of the triangle with
the following vertices.

a. A(3, −1, 2), B(1, 1, 0), and C(1, 2, −1)

b. A(3, 0, 1), B(5, 1, 0), and C(7, 2, −1)

c. A(1, 1, −1), B(2, 0, 1), and C(1, −1, 3)

d. A(3, −1, 1), B(4, 1, 0), and C(2, −3, 0)

b. 0

d.
√

5
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Exercise 4.3.5 Find the volume of the paral-
lelepiped determined by w, u, and v when:

a. w =

 2
1
1

, v =

 1
0
2

, and u =

 2
1

−1



b. w =

 1
0
3

, v =

 2
1

−3

, and u =

 1
1
1



b. 7

Exercise 4.3.6 Let P0 be a point with vector p0,
and let ax+ by+ cz = d be the equation of a plane

with normal n =

 a
b
c

.

a. Show that the point on the plane closest to P0
has vector p given by

p = p0 +
d−(p0·n)

‖n‖2 n.

[Hint: p = p0 + tn for some t, and p ·n = d.]

b. Show that the shortest distance from P0 to the
plane is |d−(p0·n)|

‖n‖ .

c. Let P′
0 denote the reflection of P0 in the plane—

that is, the point on the opposite side of the
plane such that the line through P0 and P′

0
is perpendicular to the plane. Show that
p0 +2 d−(p0·n)

‖n‖2 n is the vector of P′
0.

b. The distance is ‖p−p0‖; use part (a.).

Exercise 4.3.7 Simplify (au+bv)× (cu+dv).

Exercise 4.3.8 Show that the shortest distance
from a point P to the line through P0 with direction
vector d is ‖−→P0P×d‖

‖d‖ .

Exercise 4.3.9 Let u and v be nonzero, nonorthog-
onal vectors. If θ is the angle between them, show
that tanθ = ‖u×v‖

u·v .

Exercise 4.3.10 Show that points A, B, and
C are all on one line if and only if −→

AB ×−→
AC = 0

‖−→AB ×−→
AC‖ is the area of the parallelogram deter-

mined by A, B, and C.

Exercise 4.3.11 Show that points A, B, C, and D
are all on one plane if and only if −→AB · (−→AB×−→

AC) = 0

Exercise 4.3.12 Use Theorem 4.3.5 to confirm
that, if u, v, and w are mutually perpendicular, the
(rectangular) parallelepiped they determine has vol-
ume ‖u‖‖v‖‖w‖.
Because u and v×w are parallel, the angle θ be-
tween them is 0 or π. Hence cos(θ) = ±1, so
the volume is |u · (v × w)| = ‖u‖‖v × w‖cos(θ) =
‖u‖‖(v×w)‖. But the angle between v and w is
π

2 so ‖v×w‖ = ‖v‖‖w‖cos(π

2 ) = ‖v‖‖w‖. The re-
sult follows.

Exercise 4.3.13 Show that the volume of the
parallelepiped determined by u, v, and u × v is
‖u×v‖2.

Exercise 4.3.14 Complete the proof of Theo-
rem 4.3.3.

Exercise 4.3.15 Prove the following properties in
Theorem 4.3.2.

Property 6a) Property 7b)
Property 8c)

b. If u =

 u1
u2
u3

, v =

 v1
v2
v3

 and w =

 w1
w2
w3

,

then u× (v+w) = det

 i u1 v1 +w1
j u2 v2 +w2
k u3 v3 +w3


= det

 i u1 v1
j u2 v2
k u3 v3

+ det

 i u1 w1
j u2 w2
k u3 w3


= (u×v)+ (u×w) where we used Exercise
4.3.21.

Exercise 4.3.16

a. Show that w · (u×v) = u · (v×w) = v× (w×
u) holds for all vectors w, u, and v.
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b. Show that v−w and (u×v)+(v×w)+(w×
u) are orthogonal.

b. (v−w) · [(u×v)+ (v×w)+ (w×u)] = (v−
w) · (u×v)+(v−w) · (v×w)+(v−w) · (w×
u) =−w · (u×v)+0+v · (w×u) = 0.

Exercise 4.3.17 Show u× (v×w) = (u ·w)v−
(u×v)w. [Hint: First do it for u = i, j, and k; then
write u = xi+ yj+ zk and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:

u× (v×w)+v× (w×u)+w× (u×v) = 0

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that

(u×v) · (w×z) = det
[

u ·w u ·z
v ·w v ·z

]
[Hint: Exercises 4.3.16 and 4.3.17.]

Exercise 4.3.20 Let P, Q, R, and S be four points,
not all on one plane, as in the diagram. Show that
the volume of the pyramid they determine is

1
6 |
−→
PQ · (−→PR×−→

PS)|.

[Hint: The volume of a cone with base area A and
height h as in the diagram below right is 1

3 Ah.]

P

Q

R

S

h

Exercise 4.3.21 Consider a triangle with vertices
A, B, and C, as in the diagram below. Let α, β , and
γ denote the angles at A, B, and C, respectively, and
let a, b, and c denote the lengths of the sides oppo-
site A, B, and C, respectively. Write u =

−→
AB, v =

−→
BC,

and w =
−→
CA.

c a

bα

β

γ
A

B

C

a. Deduce that u+v+w = 0.

b. Show that u×v=w×u=v×w. [Hint: Com-
pute u× (u+v+w) and v× (u+v+w).]

c. Deduce the law of sines:

sinα

a = sinβ

b = sinγ

c

Exercise 4.3.22 Show that the (shortest) distance
between two planes n ·p = d1 and n ·p = d2 with n
as normal is |d2−d1|

‖n‖ .
Let p1 and p2 be vectors of points in the planes,
so p1 ·n = d1 and p2 ·n = d2. The distance is the
length of the projection of p2 −p1 along n; that is
|(p2−p1)·n|

‖n‖ = |d1−d2|
‖n‖ .

Exercise 4.3.23 Let A and B be points other than
the origin, and let a and b be their vectors. If a and
b are not parallel, show that the plane through A,
B, and the origin is given by

{P(x, y, z) |

 x
y
z

= sa+ tb for some s and t}

Exercise 4.3.24 Let A be a 2×3 matrix of rank 2
with rows r1 and r2. Show that

P = {XA | X = [xy];x, y arbitrary}

is the plane through the origin with normal r1×r2.

Exercise 4.3.25 Given the cube with vertices
P(x, y, z), where each of x, y, and z is either 0 or
2, consider the plane perpendicular to the diagonal
through P(0, 0, 0) and P(2, 2, 2) and bisecting it.

a. Show that the plane meets six of the edges of
the cube and bisects them.

b. Show that the six points in (a) are the vertices
of a regular hexagon.



4.4. Linear Operators on R3 251

4.4 Linear Operators on R3

Recall that a transformation T : Rn → Rm is called linear if T (x+y) = T (x)+T (y) and T (ax) =
aT (x) holds for all x and y in Rn and all scalars a. In this case we showed (in Theorem 2.6.2) that
there exists an m×n matrix A such that T (x) = Ax for all x in Rn, and we say that T is the matrix
transformation induced by A.

Definition 4.9 Linear Operator on Rn

A linear transformation
T : Rn → Rn

is called a linear operator on Rn.

In Section 2.6 we investigated three important linear operators on R2: rotations about the origin,
reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on R3: Rotations about a line through
the origin, reflections in a plane through the origin, and projections onto a plane or line through
the origin in R3. In every case we show that the operator is linear, and we find the matrices of all
the reflections and projections.

To do this we must prove that these reflections, projections, and rotations are actually linear
operators on R3. In the case of reflections and rotations, it is convenient to examine a more general
situation. A transformation T : R3 →R3 is said to be distance preserving if the distance between
T (v) and T (w) is the same as the distance between v and w for all v and w in R3; that is,

‖T (v)−T (w)‖= ‖v−w‖ for all v and w in R3 (4.4)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so the following
theorem shows that they are both linear.

Theorem 4.4.1
If T : R3 → R3 is distance preserving, and if T (0) = 0, then T is linear.

w

v+wv

T (w)

T (v+w)

T (v)

x

y

z

Figure 4.4.1

Proof. Since T (0)= 0, taking w= 0 in (4.4) shows that ‖T (v)‖= ‖v‖
for all v in R3, that is T preserves length. Also, ‖T (v)−T (w)‖2 =
‖v−w‖2 by (4.4). Since ‖v−w‖2 = ‖v‖2 − 2v ·w+ ‖w‖2 always
holds, it follows that T (v) ·T (w) = v ·w for all v and w. Hence (by
Theorem 4.2.2) the angle between T (v) and T (w) is the same as the
angle between v and w for all (nonzero) vectors v and w in R3.

With this we can show that T is linear. Given nonzero vectors v
and w in R3, the vector v+w is the diagonal of the parallelogram
determined by v and w. By the preceding paragraph, the effect of T
is to carry this entire parallelogram to the parallelogram determined
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by T (v) and T (w), with diagonal T (v+w). But this diagonal is
T (v)+T (w) by the parallelogram law (see Figure 4.4.1).

In other words, T (v+w) = T (v)+T (w). A similar argument shows that T (av) = aT (v) for all
scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section ??.

Reflections and Projections

In Section 2.6 we studied the reflection Qm : R2 →R2 in the line y = mx and projection Pm : R2 →R2

on the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

Qm has matrix 1
1+m2

[
1−m2 2m

2m m2 −1

]
and Pm has matrix 1

1+m2

[
1 m
m m2

]
.

L
PL(v)

0

v

QL(v)

Figure 4.4.2

We now look at the analogues in R3.
Let L denote a line through the origin in R3. Given a vector v in

R3, the reflection QL(v) of v in L and the projection PL(v) of v on L
are defined in Figure 4.4.2. In the same figure, we see that

PL(v) = v+ 1
2 [QL(v)−v] = 1

2 [QL(v)+v] (4.5)

so the fact that QL is linear (by Theorem 4.4.1) shows that PL is also linear.13

However, Theorem 4.2.4 gives us the matrix of PL directly. In fact, if d=

 a
b
c

 6= 0 is a direction

vector for L, and we write v =

 x
y
z

, then

PL(v) = v·d
‖d‖2 d = ax+by+cz

a2+b2+c2

 a
b
c

= 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

 x
y
z


as the reader can verify. Note that this shows directly that PL is a matrix transformation and so
gives another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in R3 with direction vector d =

 a
b
c

 6= 0. Then

13Note that Theorem 4.4.1 does not apply to PL since it does not preserve distance.
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PL and QL are both linear and

PL has matrix 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2



QL has matrix 1
a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2



Proof. It remains to find the matrix of QL. But (4.5) implies that QL(v) = 2PL(v)−v for each v

in R3, so if v =

 x
y
z

 we obtain (with some matrix arithmetic):

QL(v) =

 2
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

−

 1 0 0
0 1 0
0 0 1


 x

y
z


= 1

a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2

 x
y
z


as required.

M

v

O PM(v)

QM(v)

Figure 4.4.3

In R3 we can reflect in planes as well as lines. Let M denote a
plane through the origin in R3. Given a vector v in R3, the reflection
QM(v) of v in M and the projection PM(v) of v on M are defined in
Figure 4.4.3. As above, we have

PM(v) = v+ 1
2 [QM(v)−v] = 1

2 [QM(v)+v]

so the fact that QM is linear (again by Theorem 4.4.1) shows that PM
is also linear.

Again we can obtain the matrix directly. If n is a normal for the plane M, then Figure 4.4.3
shows that

PM(v) = v− projn v = v− v·n
‖n‖2 n for all vectors v.

If n =

 a
b
c

 6= 0 and v =

 x
y
z

, a computation like the above gives

PM(v) =

 1 0 0
0 1 0
0 0 1

 x
y
z

− ax+by+cz
a2+b2+c2

 a
b
c


= 1

a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc b2 + c2

 x
y
z


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This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in R3 with normal n =

 a
b
c

 6= 0. Then PM and

QM are both linear and

PM has matrix 1
a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc a2 +b2



QM has matrix 1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


Proof. It remains to compute the matrix of QM. Since QM(v) = 2PM(v)−v for each v in R3, the
computation is similar to the above and is left as an exercise for the reader.

Rotations

In Section 2.6 we studied the rotation Rθ : R2 → R2 counterclockwise about the origin through the
angle θ . Moreover, we showed in Theorem 2.6.4 that Rθ is linear and has matrix

[
cosθ −sinθ

sinθ cosθ

]
.

One extension of this is given in the following example.

Example 4.4.1

Let Rz, θ : R3 → R3 denote rotation of R3 about the z axis through an angle θ from the
positive x axis toward the positive y axis. Show that Rz, θ is linear and find its matrix.

θ

θ

i
j

k

Rz(i)

Rz(j)

x

y

z

Figure 4.4.4

Solution. First R is distance preserving and so is linear
by Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain
the matrix of Rz, θ .

Let i =

 1
0
0

, j =

 0
1
0

, and k =

 0
0
1

 denote the standard

basis of R3; we must find Rz, θ (i), Rz, θ (j), and Rz, θ (k).
Clearly Rz, θ (k) = k. The effect of Rz, θ on the x-y plane
is to rotate it counterclockwise through the angle θ . Hence
Figure 4.4.4 gives

Rz, θ (i) =

 cosθ

sinθ

0

 , Rz, θ (j) =

 −sinθ

cosθ

0


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so, by Theorem 2.6.2, Rz, θ has matrix

[
Rz, θ (i) Rz, θ (j) Rz, θ (k)

]
=

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1



Example 4.4.1 begs to be generalized. Given a line L through the origin in R3, every rotation
about L through a fixed angle is clearly distance preserving, and so is a linear operator by Theo-
rem 4.4.1. However, giving a precise description of the matrix of this rotation is not easy and will
have to wait until more techniques are available.

Transformations of Areas and Volumes

Origin

sv

v

Figure 4.4.5

Let v be a nonzero vector in R3. Each vector in the same direction
as v whose length is a fraction s of the length of v has the form sv
(see Figure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector u is in the
parallelogram determined by v and w if and only if it has the form
u = sv+ tw where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. But then, if T : R3 → R3

is a linear transformation, we have

T (sv+ tw) = T (sv)+T (tw) = sT (v)+ tT (w)

O

sv
v

sv+
tw

tw w

Figure 4.4.6

Hence T (sv+ tw) is in the parallelogram determined by T (v) and
T (w). Conversely, every vector in this parallelogram has the form
T (sv+ tw) where sv+ tw is in the parallelogram determined by v
and w. For this reason, the parallelogram determined by T (v) and
T (w) is called the image of the parallelogram determined by v and
w. We record this discussion as:

v

w
u

O

T (v)

T (w)

T (u)

O

Figure 4.4.7

Theorem 4.4.4
If T : R3 → R3 (or R2 → R2) is a linear operator, the image of
the parallelogram determined by vectors v and w is the
parallelogram determined by T (v) and T (w).

This result is illustrated in Figure 4.4.7, and was used in Exam-
ples 2.2.15 and 2.2.16 to reveal the effect of expansion and shear
transformations.

We now describe the effect of a linear transformation T : R3 →R3

on the parallelepiped determined by three vectors u, v, and w in
R3 (see the discussion preceding Theorem 4.3.5). If T has matrix A,
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Theorem 4.4.4 shows that this parallelepiped is carried to the paral-
lelepiped determined by T (u) = Au, T (v) = Av, and T (w) = Aw. In
particular, we want to discover how the volume changes, and it turns

out to be closely related to the determinant of the matrix A.

Theorem 4.4.5
Let vol (u, v, w) denote the volume of the parallelepiped determined by three vectors u, v,
and w in R3, and let area (p, q) denote the area of the parallelogram determined by two
vectors p and q in R2. Then:

1. If A is a 3×3 matrix, then vol (Au, Av, Aw) = | det (A)| · vol (u, v, w).

2. If A is a 2×2 matrix, then area (Ap, Aq) = | det (A)| · area (p, q).

Proof.

1. Let
[

u v w
]

denote the 3×3 matrix with columns u, v, and w. Then

vol (Au, Av, Aw) = |Au · (Av×Aw)|

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

Au · (Av×Aw) = det
[

Au Av Aw
]
= det (A

[
u v w

]
)

= det (A) det
[

u v w
]

= det (A)(u · (v×w))

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows
from Theorem 4.3.5 by taking absolute values.

k

p1

q1 2. Given p =

[
x
y

]
in R2, p1 =

 x
y
0

 in R3. By the diagram,

area (p, q) = vol (p1, q1, k) where k is the (length 1) coor-
dinate vector along the z axis. If A is a 2× 2 matrix, write
A1 =

[
A 0
0 1

]
in block form, and observe that (Av)1 = (A1v1)

for all v in R2 and A1k = k. Hence part (1) of this theorem
shows

area (Ap, Aq) = vol (A1p1, A1q1, A1k)
= | det (A1)| vol (p1, q1, k)
= | det (A)| area (p, q)

as required.



4.4. Linear Operators on R3 257

Define the unit square and unit cube to be the square and cube corresponding to the coor-
dinate vectors in R2 and R3, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the
determinant of a matrix A:

• If A is a 2 × 2 matrix, then | det (A)| is the area of the image of the unit square under
multiplication by A;

• If A is a 3× 3 matrix, then | det (A)| is the volume of the image of the unit cube under
multiplication by A.

These results, together with the importance of areas and volumes in geometry, were among the
reasons for the initial development of determinants.

Exercises for 4.4

Exercise 4.4.1 In each case show that that T is
either projection on a line, reflection in a line, or ro-
tation through an angle, and find the line or angle.

a. T
[

x
y

]
= 1

5

[
x+2y
2x+4y

]

b. T
[

x
y

]
= 1

2

[
x− y
y− x

]

c. T
[

x
y

]
= 1√

2

[
−x− y
x− y

]

d. T
[

x
y

]
= 1

5

[
−3x+4y
4x+3y

]

e. T
[

x
y

]
=

[
−y
−x

]

f. T
[

x
y

]
= 1

2

[
x−

√
3y√

3x+ y

]

b. A =

[
1 −1

−1 1

]
, projection on y =−x.

d. A = 1
5

[
−3 4

4 3

]
, reflection in y = 2x.

f. A = 1
2

[
1 −

√
3√

3 1

]
, rotation through π

3 .

Exercise 4.4.2 Determine the effect of the follow-
ing transformations.

a. Rotation through π

2 , followed by projection on
the y axis, followed by reflection in the line
y = x.

b. Projection on the line y = x followed by pro-
jection on the line y =−x.

c. Projection on the x axis followed by reflection
in the line y = x.

b. The zero transformation.

Exercise 4.4.3 In each case solve the problem by
finding the matrix of the operator.

a. Find the projection of v =

 1
−2

3

 on the

plane with equation 3x−5y+2z = 0.

b. Find the projection of v =

 0
1

−3

 on the

plane with equation 2x− y+4z = 0.
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c. Find the reflection of v=

 1
−2

3

 in the plane

with equation x− y+3z = 0.

d. Find the reflection of v=

 0
1

−3

 in the plane

with equation 2x+ y−5z = 0.

e. Find the reflection of v =

 2
5

−1

 in the line

with equation

 x
y
z

= t

 1
1

−2

.

f. Find the projection of v =

 1
−1

7

 on the line

with equation

 x
y
z

= t

 3
0
4

.

g. Find the projection of v =

 1
1

−3

 on the line

with equation

 x
y
z

= t

 2
0

−3

.

h. Find the reflection of v =

 2
−5

0

 in the line

with equation

 x
y
z

= t

 1
1

−3

.

b. 1
21

 17 2 −8
2 20 4

−8 4 5

 0
1

−3



d. 1
30

 22 −4 20
−4 28 10
20 10 −20

 0
1

−3



f. 1
25

 9 0 12
0 0 0

12 0 16

 1
−1

7



h. 1
11

 −9 2 −6
2 −9 −6

−6 −6 7

 2
−5

0


Exercise 4.4.4

a. Find the rotation of v =

 2
3

−1

 about the z

axis through θ = π

4 .

b. Find the rotation of v =

 1
0
3

 about the z

axis through θ = π

6 .

b. 1
2

 √
3 −1 0
1

√
3 0

0 0 1

 1
0
3


Exercise 4.4.5 Find the matrix of the rotation in
R3 about the x axis through the angle θ (from the
positive y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the ro-
tation about the y axis through the angle θ

(from the positive x axis to the positive z axis). cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


Exercise 4.4.7 If A is 3×3, show that the image
of the line in R3 through p0 with direction vector
d is the line through Ap0 with direction vector Ad,
assuming that Ad 6= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3× 3 and invertible, show
that the image of the plane through the origin with
normal n is the plane through the origin with nor-
mal n1 = Bn where B = (A−1)T . [Hint: Use the fact
that v ·w = vT w to show that n1 · (Ap) = n ·p for
each p in R3.]

Exercise 4.4.9 Let L be the line through the origin

in R2 with direction vector d =

[
a
b

]
6= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab
ab b2

]
.
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b. If QL denotes reflection in L, show that QL has

matrix 1
a2+b2

[
a2 −b2 2ab

2ab b2 −a2

]
.

a. Write v =

[
x
y

]
.

PL(v) =
(

v·d
‖d‖2

)
d = ax+by

a2+b2

[
a
b

]
= 1

a2+b2

[
a2x+aby
abx+b2y

]
= 1

a2+b2

[
a2 +ab
ab+b2

][
x
y

]

Exercise 4.4.10 Let n be a nonzero vector in R3,
let L be the line through the origin with direction
vector n, and let M be the plane through the origin
with normal n. Show that PL(v) = QL(v)+PM(v) for
all v in R3. [In this case, we say that PL = QL+PM.]

Exercise 4.4.11 If M is the plane through the ori-

gin in R3 with normal n =

 a
b
c

, show that QM has

matrix

1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


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Supplementary Exercises for Chapter 4

Exercise 4.1 Suppose that u and v are nonzero
vectors. If u and v are not parallel, and au+ bv =
a1u+b1v, show that a = a1 and b = b1.

Exercise 4.2 Consider a triangle with vertices A,
B, and C. Let E and F be the midpoints of sides AB
and AC, respectively, and let the medians EC and FB
meet at O. Write −→

EO = s
−→
EC and −→

FO = t
−→
FB, where s

and t are scalars. Show that s = t = 1
3 by expressing

−→
AO two ways in the form a

−→
EO+ b

−→
AC, and applying

Exercise 4.1. Conclude that the medians of a trian-
gle meet at the point on each that is one-third of
the way from the midpoint to the vertex (and so are
concurrent).

Exercise 4.3 A river flows at 1 km/h and a swim-
mer moves at 2 km/h (relative to the water). At
what angle must he swim to go straight across?
What is his resulting speed?

Exercise 4.4 A wind is blowing from the south at
75 knots, and an airplane flies heading east at 100
knots. Find the resulting velocity of the airplane.

125 knots in a direction θ degrees east of north,
where cosθ = 0.6 (θ = 53◦ or 0.93 radians).

Exercise 4.5 An airplane pilot flies at 300 km/h
in a direction 30◦ south of east. The wind is blowing
from the south at 150 km/h.

a. Find the resulting direction and speed of the
airplane.

b. Find the speed of the airplane if the wind is
from the west (at 150 km/h).

Exercise 4.6 A rescue boat has a top speed of
13 knots. The captain wants to go due east as fast
as possible in water with a current of 5 knots due
south. Find the velocity vector v = (x, y) that she
must achieve, assuming the x and y axes point east
and north, respectively, and find her resulting speed.

(12, 5). Actual speed 12 knots.

Exercise 4.7 A boat goes 12 knots heading north.
The current is 5 knots from the west. In what di-
rection does the boat actually move and at what
speed?

Exercise 4.8 Show that the distance from a point
A (with vector a) to the plane with vector equation
n ·p = d is 1

‖n‖ |n ·a−d|.

Exercise 4.9 If two distinct points lie in a plane,
show that the line through these points is contained
in the plane.
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Exercise 4.10 The line through a vertex of a tri-
angle, perpendicular to the opposite side, is called
an altitude of the triangle. Show that the three
altitudes of any triangle are concurrent. (The inter-
section of the altitudes is called the orthocentre of

the triangle.) [Hint: If P is the intersection of two of
the altitudes, show that the line through P and the
remaining vertex is perpendicular to the remaining
side.]
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